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"a living room with lots of bookshelves, couches, and small tables"

… …
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(a) 3D Mesh Generation from Text (b) Rendered Image + Mesh

Figure 1. Textured 3D mesh generation from text prompts. We generate textured 3D meshes from a given text prompt using 2D
text-to-image models. (a) The scene is iteratively created from different viewpoints (marked in blue). (b) Our generated mesh contains
compelling textures and geometry. We remove the ceiling in the top-down views for better visualization of the scene layout.

Abstract

We present Text2Room†, a method for generating room-
scale textured 3D meshes from a given text prompt as input.
To this end, we leverage pre-trained 2D text-to-image mod-
els to synthesize a sequence of images from different poses.
In order to lift these outputs into a consistent 3D scene rep-
resentation, we combine monocular depth estimation with
a text-conditioned inpainting model. The core idea of our
approach is a tailored viewpoint selection such that the con-
tent of each image can be fused into a seamless, textured 3D
mesh. More specifically, we propose a continuous align-
ment strategy that iteratively fuses scene frames with the
existing geometry to create a seamless mesh. Unlike exist-
ing works that focus on generating single objects [57, 42] or
zoom-out trajectories [18] from text, our method generates
complete 3D scenes with multiple objects and explicit 3D
geometry. We evaluate our approach using qualitative and
quantitative metrics, demonstrating it as the first method to
generate room-scale 3D geometry with compelling textures
from only text as input.

∗ joint first authorship
†https://lukashoel.github.io/text-to-room

1. Introduction

Mesh representations of 3D scenes are a crucial com-
ponent for many applications, from AR/VR asset creation
to computer graphics, yet creating these 3D assets remains
a painstaking process that requires considerable expertise.
In the 2D domain, recent works have successfully cre-
ated high-quality images from text using generative mod-
els, such as diffusion models [66, 59, 68]. These methods
significantly reduce the barriers to creating images that con-
tain a user’s desired content, effectively helping towards the
democratization of content creation. An emerging line of
work has sought to apply similar methods to create 3D mod-
els from text [9, 57, 30, 42, 39], yet existing approaches
come with a number of significant limitations and lack the
generality of 2D text-to-image models.

One of the core challenges of generating 3D models is
coping with the lack of available 3D training data, as 3D
datasets are vastly smaller than those available in many
other applications, such as 2D image synthesis. For ex-
ample, methods that directly use 3D supervision, such as
Chen et al. [9], are often limited to datasets of simple
shapes, such as ShapeNet [8]. To address these data lim-
itations, recent methods [57, 30, 42, 39, 89] lift the expres-
sive power of 2D text-to-image models into 3D by formu-
lating 3D generation as an iterative optimization problem
in the image domain. This allows them to generate 3D ob-
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jects stored in a radiance field representation, demonstrating
the ability to generate arbitrary (neural) shapes from text.
However, these methods cannot easily be extended to cre-
ate room-scale 3D structure and texture. The challenge of
generating large scenes is ensuring that the generated out-
put is dense and coherent across outward-facing viewpoints,
and that these views contain all of the required structures,
such as walls, floors, and furniture. Additionally, a mesh
remains a desired representation for many end-user tasks,
such as rendering on commodity hardware (which requires
an additional conversion step as presented in Lin et al. [42]).

To address these shortcomings, we propose a method
that extracts scene-scale 3D meshes from off-the-shelf 2D
text-to-image models. Our method iteratively generates a
scene through inpainting and monocular depth estimation.
We produce an initial mesh by generating an image from
text, and backproject it into 3D using a depth estimation
model. Then, we iteratively render the mesh from novel
viewpoints. From each one, we fill in holes in the rendered
images via inpainting, then fuse the generated content into
the mesh (Fig. 1a).

Our iterative generation scheme has two important de-
sign considerations: how we choose the viewpoints, and
how we merge generated scene content with the existing
mesh. We first select viewpoints from predefined trajec-
tories that will cover large amounts of scene content, then
adaptively select viewpoints that close remaining holes.
When merging generated content with the mesh, we align
the two depth maps to create smooth transitions, and remove
parts of the mesh that contain distorted textures. Together,
these decisions lead to large, scene-scale 3D meshes with
compelling textures and consistent geometry (Fig. 1b), that
can represent a wide range of rooms.
To summarize, our contributions are:
• Generating 3D meshes of room-scale indoor scenes with

compelling textures and geometry from any text input.
• A method that leverages 2D text-to-image models and

monocular depth estimation to lift frames into 3D in an
iterative scene generation. Our proposed depth alignment
and mesh fusion steps, enable us to create seamless and
undistorted geometry and textures.

• A two-stage tailored viewpoint selection that samples
camera poses from optimal positions to first create the
room layout and furniture and then close any remaining
holes, creating a watertight mesh.

2. Related Work
Text-based Generation has seen significant advances due
to large-scale image-text datasets [74, 73, 14, 72] and scal-
able generative model architectures [16, 67, 61, 33], en-
abling synthesis of novel images from text [20, 3, 55].

Recently, diffusion models [79, 24, 81, 82, 83] achieved
impressive results on image synthesis [15, 66, 68, 51, 59]

through improvements like latent space denoising [66, 85],
faster sampling [24, 80, 53, 35], and better guidance [25].

In particular, text-to-image methods like Stable Diffu-
sion [66], Imagen [68], GLIDE [51] and DALL·E 2 [59]
yield diverse, high-fidelity, and controllable [6, 95] outputs.
Text-based generation has been extended to other modali-
ties including audio [36, 17, 29, 71], video [76, 92, 86, 26],
and 4D fields [77]. We use text-to-image models by lifting
their generated output into complete 3D scene meshes.

Text-to-3D. Several methods use 3D data for supervised
training of text-to-3D models [9, 52, 5]; however this di-
rection remains challenging due to the lack of large-scale
aligned datasets of text and 3D.

Alternative approaches use 2D vision-language models
like CLIP [58] to create 3D content by formulating the
generation as an optimization problem in the image do-
main [87, 30, 39, 49, 31] or as object alignment [70]. Re-
lated methods refine existing 3D input through text guid-
ance in a similar fashion [47, 10, 88, 63].

Recent methods [57, 42, 46, 89, 45] combine large text-
to-image diffusion models [66, 68] and neural radiance
fields [48] to generate 3D objects without training. Other
approaches train custom diffusion models on a similar text-
to-3D task [40, 50, 12]. In contrast, we use a fixed text-
to-image model and extract a 3D mesh representing entire
scenes of many objects and structural elements like walls.

3D-Consistent View Synthesis from a Single Image. Sev-
eral methods have been proposed that perform novel-view-
synthesis from a single image [65, 91, 75, 62, 19]. Oth-
ers optimize a neural 3D representation of an object, that
can be viewed from arbitrary novel view points [93, 90, 1].
Another line of work performs perpetual view genera-
tion [78, 43, 41, 7], synthesizing videos via a render-refine-
repeat pattern from a single RGB image that depict a scene
along a forward-facing camera trajectory. In very recent
concurrent work, Fridman et al. [18] create 3D scenes from
text, but focus on this type of 3D-consistent “zoom-out”
video generation. Instead, we generate complete, textured
3D room geometry from arbitrary trajectories.

3. Method

Our method creates a textured 3D mesh of a complete
scene from text input. To this end, we continuously fuse
generated frames from a 2D text-to-image model at differ-
ent poses into a joint 3D mesh, creating the scene over time.
The core idea of our approach is a two-stage tailored view-
point selection, that first generates the scene layout and ob-
jects and then closes remaining holes in the 3D geometry
(Section 3.4). We visualize this workflow in Figure 2. For
each pose in both stages, we apply an iterative scene genera-
tion scheme to update the mesh (Section 3.1). We first align
each frame with the existing geometry with a depth align-
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(a) Scene Generation Stage (b) Scene Completion Stage

Figure 2. Method overview. We iteratively create a textured 3D mesh in two stages. (a) First, we sample predefined poses and text to
generate the complete scene layout and furniture. Each new pose (marked in green) adds newly generated geometry to the mesh (depicted
by green triangles) in an iterative scene generation scheme (see Figure 3 for details). Blue poses/triangles denote viewpoints that created
geometry in a previous iteration. (b) Second, we fill in the remaining unobserved regions by sampling additional poses (marked in red)
after the scene layout is defined.
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Figure 3. Iterative scene generation. For each new pose, we ren-
der the current mesh to obtain partial RGB and depth renderings.
We complete both, utilizing respective inpainting models and the
text prompt. Next, we perform depth alignment (see Section 3.2)
and mesh filtering (see Section 3.3) to obtain an optimal next mesh
patch, that is finally fused with the existing geometry.

ment strategy (Section 3.2). Next, we triangulate and filter
the novel content to merge it into the mesh (Section 3.3).

3.1. Iterative 3D Scene Generation

Our scene is represented as a mesh M = (V, C,S)
where the vertices V ∈ RN×3, vertex colors C ∈ RN×3

and the face set S ∈ NM×3
0 are generated over time. In-

put to our method is a set of arbitrary text prompts {Pt}Tt=1

that corresponds to our selected poses {Et}Tt=1 ∈ R3×4 in
both stages. Inspired by recent methods [43, 41], we iter-
atively build up the scene, following a render-refine-repeat
pattern. We summarize this iterative scene generation pro-
cess in Figure 3. Formally, for each step of generation t, we
first render the current scene from a novel viewpoint:

It, dt,mt = r(Mt, Et), (1)

where r is a classical rasterization function without shad-
ing, It is the rendered image, dt the rendered depth and mt

the image-space mask, that marks pixels without observed

content. We then use a fixed text-to-image model Ft2i to
inpaint unobserved pixels according to the text prompt:

Ît = Ft2i(It,mt, Pt). (2)

Next, we inpaint unobserved depth by applying a monocular
depth estimator Fd in our depth alignment (see Section 3.2):

d̂t = predict-and-align(Fd, It, dt,mt). (3)

Finally, we combine the novel content {Ît, d̂t,mt} with the
existing mesh by our fusion scheme (see Section 3.3):

Mt+1 = fuse(Mt, Ît, d̂t,mt, Et). (4)

3.2. Depth Alignment Step

To lift a 2D image I into 3D, we predict the per-pixel
depth. To correctly combine old and new content, it is
necessary that both align with each other. In other words,
similar regions in a scene like walls or furniture should be
placed at similar depth. However, directly using the pre-
dicted depth for backprojection leads to hard cuts and dis-
continuities in the 3D geometry, since the depth is inconsis-
tent in scale between subsequent viewpoints (see Figure 7a).

To this end, we perform depth alignment in two-stages.
First, we use a state-of-the-art depth inpainting network [4]
that takes ground-truth depth d for known parts in the image
as input and aligns the prediction to it: d̂p = Fd(I, d).

Inspired by Liu et al. [43] we then improve the result by
optimizing for scale and shift parameters γ, β ∈ R, aligning
predicted and rendered disparity in the least squares sense:

min
γ,β

∥∥∥∥∥m⊙

(
γ

d̂p
+ β − 1

d

)∥∥∥∥∥
2

, (5)

where we mask out unobserved pixels via m. We can then
extract the aligned depth as d̂ = ( γ

d̂p
+ β)−1. Finally, we

smooth d̂ by applying a 5 × 5 Gaussian kernel at the mask
edges (see supplemental material for more details).
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(a) Pixel Triangulation (b) Face Filtering (c) Mesh Fusion(a) Pixel Triangulation (b) Face Filtering (c) Mesh Fusion(a) Pixel Triangulation (b) Face Filtering (c) Mesh Fusion(a) Pixel Triangulation (b) Face Filtering (c) Mesh Fusion
Figure 4. Visualization of our mesh fusion step. (a) We triangu-
late an image, such that 4 neighboring pixels (orange dots) create
two faces. (b) We filter a face (marked in red), if its surface normal
forms a small grazing angle with the viewing direction or if any
edge in world space is too long. (c) We fuse the remaining faces
(marked in green) with the existing geometry (marked in blue).

3.3. Mesh Fusion Step

At each step, we insert new content {Ît, d̂t,mt} into the
scene. For that, we first backproject the image-space pixels
into a world-space point cloud:

Pt = {E−1
t K−1 · d̂t[u, v] · (u, v, 1)T }W,H

u=0,v=0, (6)

where K ∈ R3×3 are the camera intrinsics and W,H are
image width and height, respectively. We then use a simple
triangulation scheme (Figure 4a), where each four neigh-
boring pixels {(u, v), (u+1, v), (u, v+1), (u+1, v+1)} in
the image form two triangles. Since the estimated depth is
noisy, this naı̈ve triangulation creates stretched out 3D ge-
ometry (see Figure 7b). To alleviate this problem, we pro-
pose two filters that remove stretched out faces (Figure 4b).

First, we filter faces based on their edge length. We re-
move a face if the Euclidean distance of any face edge is
larger than a threshold δedge. Second, we filter faces based
on the angle between surface normal and viewing direction:

S = {(i0, i1, i2)|nT v > δsn} (7)

where S is the face set, (i0, i1, i2) are the vertex indices of
the triangle, δsn is the threshold, n ∈ R3 is the normalized
face normal, and v ∈ R3 is the normalized view direction
in world space from the camera center towards the aver-
age pixel location from which the triangle originated. This
avoids creating texture for large regions of the mesh from a
comparatively small number of pixels from an image.

Finally, we fuse together the newly generated mesh patch
and the existing geometry (Figure 4c). All faces that are
backprojected from pixels falling into the inpainting mask
mt are stitched together with their neighboring faces, which
are already part of the mesh. Precisely, we continue the
triangulation scheme at all edges of mt, but use the existing
vertex positions of Mt to create the corresponding faces.

3.4. Two-Stage Viewpoint Selection

A key part of our method is the choice of text prompts
and camera poses from which the scene is synthesized.
Users can in principle choose these inputs arbitrarily to
create any desired indoor scene. However, the generated
scene can degenerate and contain stretch and hole artifacts,
if poses are chosen carelessly (see Figure 7 and supplemen-
tal material). To this end, we propose a two-stage viewpoint
selection strategy, that samples each next camera pose from
optimal positions and refines empty regions subsequently.

Generation Stage. In the first stage, we create the main
parts of the scene, including the general layout and fur-
niture. We subsequently render predefined trajectories in
different directions that eventually cover the whole room.
We found generation works best, if each trajectory starts
off from a viewpoint with mostly unobserved regions. This
generates the outline of the next chunk, while still being
connected to the rest of the scene (e.g., see Figure 3). Then,
we complete the 3D structure of that chunk by moving and
rotating into it subsequently until the end of the trajectory.

Additionally, we ensure an optimal observation distance
for each pose. We translates camera positions T0∈R3 along
the look-at direction L∈R3 uniformly: Ti+1=Ti−0.3L. We
stop if the mean rendered depth is larger than 0.1 or discard
the camera after 10 steps. This avoids views too close to
existing geometry. For example, the green pose in Figure 2a
is moved back as far as possible into the existing geometry
such that it views most of the empty floor region.

We create closed room layouts following this principle,
by choosing trajectories that generate the next chunks in a
circular motion, roughly centered around the origin. We
found it helpful to discourage the text-to-image generator
from generating furniture in unwanted regions by engineer-
ing the text prompts accordingly. For example, for poses
looking at the floor or ceiling, we choose text prompts that
only contain the words “floor” or “ceiling”, respectively.

Completion Stage. After the first stage, the scene layout
and furniture is defined. However, it is impossible to choose
sufficient poses a-priori. Since the scene is generated on-
the-fly, the mesh contains holes that were not observed by
any camera (see Figure 7c). We complete the scene by sam-
pling additional poses a-posteriori, looking at those holes.

Inspired by trajectory optimization [23, 64], we voxelize
the scene into dense uniform cells. We sample random
poses in each cell, discarding those being too close to exist-
ing geometry. We select one pose per cell that views most
unobserved pixels (e.g., see the red poses in Figure 2b).

Next, we inpaint the scene from all chosen camera poses
following Section 3.1. Similar to Fridman et al. [18], we ob-
serve it is important to clean the inpainting masks, because
our text-to-image generator can generate better results for
large connected regions. Thus, we first inpaint small holes
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with a classical inpainting algorithm [84] and dilate the re-
maining holes. We additionally remove all faces that fall
into the dilated region and are close to the rendered depth.
Please see the supplemental material for more details.

Finally, we run Poisson surface reconstruction [34] on
the scene mesh. This closes any remaining holes after com-
pletion and smoothens out discontinuities. The result is a
watertight mesh of the generated scene, that can be rendered
with classical rasterization.

4. Results

Implementation Details. We implement mesh rasteriza-
tion and fusion with Pytorch3D [60]. As our text-to-image
model Ft2i, we utilize a Stable Diffusion [66] model, that
is finetuned on the image inpainting task, using additional
mask input. We generate a single inpainting proposal and
employ a state-of-the-art guided diffusion sampler [44]. As
our monocular depth estimator Fd, we employ an Iron-
Depth [4] model, that is trained on indoor scenes from the
ScanNet dataset [13] and augment it for depth inpainting
according to Bae et al. [4]. We set δedge=0.1 and δsn=0.1
in all our experiments. During generation, we use 20 differ-
ent trajectories with 10 frames each sampled between the
respective start and end poses. We construct prompts using
the guidelines suggested by Pierre [56]. Creating one scene
takes approximately 50 minutes on one RTX 3090 GPU.

Baselines. To the best of our knowledge, there are no direct
baselines that generate textured 3D room geometry from
text. We compare against four related methods (please see
the supplemental material for more details about baselines).
• PureClipNeRF [39]: We compare against text-to-3D

methods for generating objects [57, 42, 30, 39, 89] and
choose Lee et al. [39] as open-source representative.

• Outpainting [59, 54]: We combine outpainting from a
Stable Diffusion [66] model with depth estimation and tri-
angulation to create a mesh from an enlarged viewpoint.

• Text2Light [11]: We generate RGB panoramas from text
using Chen et al. [11]. Estimating 3D mesh structure
from a panorama is difficult. Related approaches estimate
room layout [94], perform view synthesis [37, 27, 22, 28]
or predict 360◦ depth [2, 32]. We perform depth predic-
tion and subsequently apply our mesh fusion step.

• Blockade [38]: We apply Blockade [38], which uses a
text-to-image diffusion model to produce more expressive
RGB panoramas. We then extract the mesh similarly.

Evaluation Metrics. The generated 3D geometry is eval-
uated both quantitatively and qualitatively. We calculate
CLIP Score (CS) [58] and Inception Score (IS) [69] on RGB
renderings of the respective scenes. Additionally, we con-
duct a user study and ask n=61 users to score Perceptual
Quality (PQ) and 3D Structure Completeness (3DS) of the
whole scene on a scale of 1−5.

Method 2D Metrics User Study

CS ↑ IS ↑ PQ ↑ 3DS ↑
PureClipNeRF [39] 24.06 1.26 2.34 2.38
Outpainting [59, 54] 23.10 1.60 2.90 2.58
Text2Light [11]+Ours 25.99 2.21 2.82 2.97
Blockade [38]+Ours 26.29 2.13 3.35 3.36

Ours w/o alignment 26.73 1.78 3.12 2.96
Ours w/o stretch removal 27.72 1.86 3.28 3.75
Ours w/o completion 27.97 2.18 3.72 3.87
Ours 28.02 2.31 4.01 4.19

Table 1. Quantitative comparison. We report 2D metrics
and user study results, including: Clip Score (CS), Inception
Score (IS), Perceptual Quality (PQ), and 3D Structure Complete-
ness (3DS). Our method creates scenes with the highest quality.

4.1. Qualitative Results

We show top-down views into the scene and RGB ren-
derings from within for our method and baselines in Fig-
ure 6. We show additional results of our method in Figure 5.
PureClipNeRF [39] creates the key objects of the given text
prompt, but does not create a complete 3D structure with
floor, walls and ceilings. Outpainting [59, 54] creates high-
detail textures, but projection from a single viewpoint cre-
ates holes due to occlusion and hinders the creation of com-
plete 3D geometry. Text2Light [11] and Blockade [38] both
create a high-detail 360◦ view of a complete scene, but oc-
clusions that cannot be resolved from a single panoramic
viewpoint lead to holes in the extracted 3D geometry.

In contrast, our approach creates high-detail textures and
geometry, that are fused into a complete 3D scene mesh
without holes. The resulting scenes contain flat floors, walls
and ceilings, as well as 3D object geometry distributed
throughout the scene. When specifying text prompts with
a huge variety, the resulting scene contains a diverse set
of objects. Please see the supplemental material for more
scenes, animated results, intermediate outputs of our base-
lines (such as the panoramic images) as well as top-down
views of meshes, that contain the reconstructed ceilings.

4.2. Quantitative Results

We show quantitative results averaged over multiple
scenes in Table 1. We render 60 images from novel view-
points for each scene to calculate the 2D metrics. We
present users with multiple top-down views and renderings
for each scene and let them rate each method individually
(no side-by-side comparison). Stretched-out geometry and
holes in the 3D geometry lead to lower scores for the base-
lines in all image-based metrics. Our approach achieves the
highest scores, because the renderings are complete from
arbitrary novel poses, satisfy the given text-prompt and

5



Editorial Style Photo, Coastal Bathroom, Clawfoot Tub, Seashell, Wicker, Mosaic Tile, Blue and White

A living room with a lit furnace, couch, and cozy curtains, bright lamps that make the room look well-lit

Editorial Style Photo, Modern Living Room, Large Window, Leather, Glass, Metal, Wood Paneling, Apartment

Editorial Style Photo, Modern Nursery, Table Lamp, Rocking Chair, Tree Wall Decal, Wood, Cotton, Faux Fur
Figure 5. 3D scene generation results of our method. We show color and shaded geometry renderings from generated scenes with
corresponding text prompts. Our method synthesizes realistic meshes satisfying text descriptions. We remove the ceiling in the top-down
view for better visualization of the scene layout.
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Editorial Style Photo, Industrial Home Office, Steel Shelves, Concrete, Metal, Edison Bulbs, Exposed Ductwork

a bedroom with a king-size bed and a large wardrobe
PureClipNeRF [39] Outpainting [59, 54] Text2Light [11]+Ours Blockade [38]+Ours Ours

Figure 6. Qualitative comparison of our method and baselines. PureClipNeRF [39] cannot produce immersive scenes with floors and
walls. Outpainting [59, 54] does not produce 3D consistent scenes. Text2Light [11] and Blockade [38] both have holes due to occlusions.
In contrast, our method creates complete meshes without holes and high details. We remove the ceiling in the top-down view for better
visualization of the scene layout.

contain high-resolution image features. Users prefer our
method, which highlights the quality of our accurate and
complete geometry, as well as the RGB texture.

4.3. Ablations

The key ingredients of our method are depth alignment
(Section 3.2), mesh fusion (Section 3.3) and the two-stage
viewpoint selection (Section 3.4). We demonstrate the im-
portance of each component in Figure 7 and Table 1.
Depth alignment creates seamless scenes. Monocular
depth predictions from subsequent frames can be inconsis-
tent in scale. This leads to disconnected components in
the mesh that are backprojected from multiple viewpoints
(see Figure 7a). Our depth alignment strategy allows fusing
multiple frames into a seamless mesh, eventually creating a
complete scene with flat floors, walls, ceilings and no holes.
Stretch removal creates undistorted scene geometry.
During mesh fusion, we update the scene geometry with
the contents of the next frame. Due to noisy depth predic-
tion, the objects become stretched out, if they are observed

from small grazing angles. Thus, we propose two filters
(edge length and surface normal thresholds) that alleviate
this issue. Instead of baking in stretched-out geometry (see
Figure 7b), we disregard the corresponding faces and let the
object be completed from a more suitable, later viewpoint.

Two-stage generation creates complete scenes. Our ap-
proach chooses camera poses in two stages to create a com-
plete scene without holes. After generating the scene from
predefined trajectories, the scene still contains some holes
(see Figure 7c). Because the scene is built-up over time, it
is impossible to choose camera poses a-priori, that view all
unobserved regions. To this end, our completion stage sam-
ples poses a-posteriori to refine those regions. The resulting
mesh is watertight and contains no holes (see Figure 7d).

4.4. Spatially Varying Scene Generation

Our method can be applied to generate a scene as the
combination of multiple text prompts. Specifically, we use
separate text prompts for different poses, crafting a set of
trajectories that spatially combines scene descriptions. This
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living room, couches, curtains, lit furnace, lamps
(a) Ours w/o alignment (b) Ours w/o stretch removal (c) Ours w/o completion (d) Ours (full)

Figure 7. Ablation study on the key components of our method. Without depth alignment (see Section 3.2), different parts of the scene
are disconnected and do not fuse into a seamless mesh. Without edge and surface normal thresholds (see Section 3.3), many faces are
stretched out unnaturally. Without completion (see Section 3.4), the mesh has holes in remaining unobserved regions. Our full pipeline
creates complete, high-resolution scenes. We remove the ceiling in the top-down view for better visualization of the scene layout.

kitchen, dinner table, dishwashers, ovens, countertops
living room, lit furnace, couch, curtains

bathroom, shower, bathtub
bedroom, king-size bed, wardrobes

Figure 8. Spatially varying scene generation. Our method can
create rooms with multiple parts by prompt mixing. We use sepa-
rate prompts for cameras viewing different parts of the scene. This
is a controllable way to create rooms from multiple descriptions.

can be desired to avoid repeating elements in a complete
scene (e.g., multiple couches could be spread out over the
whole room when using the same prompt for every camera).
Instead, users can specify different object positions through
different camera poses and text prompts. It can also be used
to design a house comprised of multiple rooms, each with
a different type (e.g., a living room that leads to a kitchen).

“couch”

“dining
table”

“bookshelf,
window”

Figure 9. Scene generation with layout guidance. Our method
can generate scenes from layout guidance. Left: we describe ob-
jects with different prompts for cameras facing at different direc-
tions. Right: the generated part of the room.

We show results that combine multiple text prompts in Fig-
ure 8 and Figure 9.

We note that the layout can only be partially controlled
by the camera poses, since scene generation can create
chunks with larger or smaller extent. We believe this
demonstrates an exciting application of our method, that can
be further explored in future work.

4.5. Limitations

Our approach allows to generate 3D room geometry
from arbitrary text prompts that are highly detailed and con-
tain consistent geometry. Nevertheless, our method can still
fail under certain conditions (see supplemental material).
First, our thresholding scheme (see Section 3.3) may not
detect all stretched-out regions, which may lead to remain-
ing distortions. Additionally, some holes may still not be
completed fully after the second stage (see Section 3.4),
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which results in over-smoothed regions after applying pois-
son reconstruction. Our scene representation does not de-
compose material from lighting, which bakes in shadows or
bright lamps, that are generated from the diffusion model.

5. Conclusion

We have shown a method to generate textured 3D meshes
from only text input. We use text-to-image 2D generators
to create a sequence of images. The core insight of our
method is a tailored viewpoint selection, that allows to cre-
ate a 3D mesh with seamless geometry and compelling tex-
tures. Specifically, we lift the images into a 3D scene, by
employing our alignment strategy that iteratively fuses all
images into the mesh. Our output meshes represent arbi-
trary indoor scenes that can be rendered with classical ras-
terization pipelines. We believe our approach demonstrates
an exciting application of large-scale 3D asset creation, that
only requires text as input.
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A. Supplemental Video

Please watch our attached video * for a comprehensive
evaluation of the proposed method. We include rendered
videos of multiple generated scenes from novel trajecto-
ries, that showcase the quality of both generated texture and
geometry (and also show the generated ceilings). We also
show an animation how the mesh is built up over time, that
illustrates the usage of our two-stage pose sampling scheme
(generation and completion). We compare against baselines
and ablations of our method by showing rendered videos.

B. Societal Impact

Our method leverages text-to-image models to generate a
sequence of images from text, specifically we use the Stable
Diffusion model [66]. Thus it inherits possible drawbacks
of these 2D models. First, our method could be exploited
to generate harmful content, by forcing the text-to-image
model to generate respective images. Furthermore, our
method is biased towards the cultural or stereotypical data
distribution, that was used to train the text-to-image model.
Lastly, we note that text-to-image models are trained on
large-scale text-image datasets [72]. Thus, the model learns
to reproduce and combine the style of artists, whose works
are contained in these datasets. This raises questions regard-
ing the correct way to credit these artists or if it is ethical to
benefit from their works in this way at all.

Our method can be used to generate meshes, that depict
entire scenes, from only text as input. This significantly
reduces the required expertise to model and design such 3D
assets. Thus, we believe our work proposes a promising
step towards the democratization of large-scale 3D content
creation.

C. Limitations

Given a text prompt, our approach allows to generate 3D
room geometry that is highly detailed and contains consis-
tent 3D geometry. Nevertheless, our method can still fail
under certain conditions (see Figure 10).

First, our completion stage (see Section 3.4) might not
be able to inpaint all holes (Figure 10b). For example this
can happen, if an object contains holes that are close to a
wall. These angles are hard to see from additional cameras
and thus might remain untouched. We still close these holes
by applying Poisson surface reconstruction [34]. However,
this can results in overly smoothed geometry.

Second, our mesh fusion stage (see Section 3.3) might
not remove all stretched-out faces. Faces can appear
stretched-out because of imperfect depth estimation and
alignment. Over time this can yield unusual room shapes

*https://youtu.be/fjRnFL91EZc

such as the curved wall in Figure 10c. We apply two fil-
tering schemes to remove stretched-out faces before fus-
ing them with the existing geometry. Both use thresholds
δsn=0.1, δedge=0.1, that we fix during all our experiments.
It can happen that some faces are not removed by the filter-
ing schemes, but are still stretched-out unnaturally. How-
ever, we find that lowering the thresholds would also re-
move unstretched geometry. This would make creating a
complete scene harder, because more holes need to be in-
painted in the completion stage.

D. Details on User Study
We conduct a user study and ask n=61 users to score

Perceptual Quality (PQ) and 3D Structure Completeness
(3DS) of the whole scene on a scale of 1−5. We show an ex-
ample of how we asked the users to score these two metrics
in Figure 11. We present users with multiple images from
each scene, that show it from multiple angles. Then we ask
them to rate the scene on a scale from 1−5 by asking them
about the 3D structure completeness and the overall per-
ceptual quality. In total, we received 1098 datapoints from
multiple scenes and report averaged results per method.

E. Additional Implementation Details
We give additional implementation details in the follow-

ing subsections.

E.1. Importance of Predefined Trajectories

We create the complete scene layout and furniture in
the first stage of our tailored two-stage viewpoint selection
scheme (see Section 3.4). To this end, we sample multi-
ple predefined trajectories from which we iteratively gen-
erate the scene. We fix the trajectories for our main re-
sults, as we found it already creates rooms with a variety
of different layouts. Users can modify them according to
our guidelines as demonstrated in Section 4.4 in the main
paper. Each trajectory consists of a start pose and an end
pose and we linearly interpolate between both. We found
generation works best, if each trajectory starts off from a
viewpoint with mostly unobserved regions. This gives the
text-to-image model enough freedom to create novel con-
tent with reasonable global structure.

Thus, we construct each trajectory with the following
principle. First, we select a start pose that views mostly un-
observed content and generate the outline of the next scene
chunk from it (Figure 12b). Then, we subsequently trans-
late and rotate into the chunk to refine its 3D structure until
the end of the trajectory (Figure 12c). This creates mesh
patches with convincing 3D structure (Figure 12d). In con-
trast, if we design trajectories that do not follow this prin-
ciple, results can degenerate. For example, if the viewpoint
change is small, the text-to-image model creates novel con-
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(a) created scene (b) overly smoothed geometry (c) stretched geometry
Figure 10. Limitations of our method. (a) Our approach creates scenes with compelling textures and complete structure like walls, floor
and ceiling. (b) Our completion stage (see Section 3.4) might not be able to inpaint all holes, if no suitable camera pose could be sampled
(e.g. small areas behind an object that are close to a wall). The hole is still closed through Poisson reconstruction [34], but the geometry
may become smoothed. (c) Our fusion stage (see Section 3.3) might not remove all stretched-out faces, because we use fixed thresholds.

Figure 11. User study interface. (Top) We present users with
multiple images from each scene, that show it from multiple an-
gles. (Bottom) We ask users to rate the scene on a scale from 1−5
by asking them about the 3D structure completeness (question 1)
and the overall perceptual quality (question 2).

tent only for small portions of the image (Figure 12e-g).
Thus, locally the generated content looks reasonable, but it
accumulates into inconsistent global structure (Figure 12h).

E.2. Effect of Depth Smoothing in Alignment

For each camera pose in both stages, we follow an itera-
tive scene generation scheme (see Section 3.1). After gener-
ating novel content, we predict its depth in our depth align-
ment stage (see Section 3.2). First, we predict the depth
using a monocular depth inpainting network (Figure 13b).
However, directly using this depth for mesh fusion results
in unaligned mesh patches (Figure 13g). Thus, we improve
the result by aligning rendered depth and inpainted depth
in the least squares sense (Figure 13c). Finally, we smooth

the aligned depth by applying a 5 × 5 gaussian blur kernel
at the image edges between rendered and predicted depth
(Figure 13d). This smoothens out remaining discontinuity
artifacts between old and new content (Figure 13e and f).
In practice, we found this can further reduce sharp borders
between objects, leading to overall better alignment (Fig-
ure 13h).

E.3. Importance of Mask Dilation in Completion

We complete the scene in the second stage of our tailored
two-stage viewpoint selection scheme, by filling in remain-
ing holes in the mesh (see Section 3.4). To this end, we
first select suitable camera poses that look at these holes
(Figure 14a). We then follow the iterative scene generation
scheme to fill in the holes in the mesh (see Section 3.1). The
holes can have arbitrarily small or large sizes, depending on
how the scene layout was generated in the first stage of our
method (Figure 14b). Similarly to Fridman et al. [18], we
found that directly inpainting such holes can lead to sub-
optimal results (Figure 14c). This is because the text-to-
image model needs to inpaint small regions and the direct
neighborhood of the holes can be distorted. To alleviate
this issue, we inpaint small holes with a classical inpaint-
ing algorithm [84]. We classify small holes by applying a
morphological erosion operation with a 3× 3 kernel on the
inpainting mask. Next, we increase the size of remaining
holes, by repeating a morphological dilation operation with
a 7× 7 kernel on the eroded inpainting mask for five times
(Figure 14d). Finally, we inpaint the image using the dilated
mask (Figure 14e). This yields more convincing results be-
cause the text-to-image model can inpaint larger areas and
create more meaningful global structure. To combine the
new content with the existing mesh, we apply our triangu-
lation scheme (see Section 3.3). Additionally, we remove
all faces that fall into the dilated region and are close to the
rendered screen-space depth (since they are replaced by the
novel content).
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(a) start image (b) ours: next chunk (c) ours: refine chunk (d) ours: after trajectory

(e) small change I (f) small change II (g) small change III (h) small change: after trajectory
Figure 12. Importance of predefined trajectories. We sample predefined trajectories in the first stage of our tailored two-stage viewpoint
selection scheme (see Section 3.4). First, we create the outline of the next scene chunk (b). Then, we sample additional poses that translate
and rotate into the new scene chunk to complete its 3D structure (c). This results in a 3D consistent next mesh patch, that we fuse with
existing content (d). In contrast, results degenerate (h), if we sample sub-optimal poses (e.g. small viewpoint changes in e-g).

F. Additional Discussion on Related Methods
and Baselines

To the best of our knowledge, there are no direct base-
lines that generate textured 3D room geometry from text.
We compare against four related methods, that do not re-
quire supervision from 3D datasets. In the following we
give additional discussion on related methods and our se-
lected baselines.

PureClipNeRF [39]: We compare against text-to-3D meth-
ods for generating objects [57, 42, 30, 39, 89] and choose
Lee et al. [39] as open-source representative. A common
pattern in these text-to-3D methods is to sample inward-
facing poses on a hemisphere, from which the object is iter-
atively optimized. While the method of Lee et al. [39] does
not use a diffusion model to create high-fidelity images, it
still uses the same pose sampling pattern. This allows us
to compare against these methods in general, by analyzing
how well this pose sampling pattern can produce complete
3D scenes with structural elements like walls or floors. We
also run DreamFusion [57] from the third-party implemen-
tation of Guo et al. [21], see Figure 15. Similar to Pure-
ClipNeRF, object-centric cameras yield incomplete rooms.
Outward-facing cameras yield blurry 360◦ surroundings,
showing floaters when rendered out-of-distribution.

Outpainting [59, 54]: We compare against image outpaint-
ing. We combine outpainting from a Stable Diffusion [66]
model with depth estimation and triangulation to create a
mesh from an enlarged viewpoint. Starting off from a single
generated image, we can synthesize novel content around it
to create a complete scene in a single image plane (Fig-
ure 16a). After creating the image, we then perform depth
estimation and triangulation to lift the image into a 3D
mesh.

Text2Light [11]: We generate RGB panoramas from text
using Chen et al. [11]. We show example outputs in Fig-
ure 16b. One can create immersive experiences by render-
ing a panorama onto a sphere, allowing to view the scene
from arbitrary 360◦ viewpoints. However, it is not possible
to simulate a true 3D environment directly (e.g., translating
or rotating around objects), because the panorama only cap-
tures a single viewpoint. Thus, related approaches estimate
room layout [94], perform view synthesis [37, 27, 22, 28]
or predict 360◦ depth [2, 32] from one or multiple panora-
mas. To compare to our method, we reconstruct the 3D
mesh structure that can be obtained from a single panoramic
image. To this end, we perform depth prediction and subse-
quently apply our mesh fusion step.

Blockade [38]: We compare against Blockade [38], which
uses a text-to-image diffusion model to produce expressive
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(a) rendered depth (b) inpainted depth (c) aligned depth (d) aligned + smoothed depth

(e) zoom-in of (c) (f) zoom-in of (d) (g) fused mesh from (b) (h) fused mesh from (d)
Figure 13. Details on the depth alignment step. For each novel pose, we predict the depth for the newly generated image content (see
Section 3.2). First we inpaint the depth using a monocular depth prediction network (b). Then, we align inpainted depth (b) and rendered
depth (a) in the least squares sense to obtain an aligned depth (c). Finally, we smooth the result to remove remaining sharp borders between
old and new content (d). This results in smoother, less blocky depth (e and f). Our depth alignment is necessary to create transitions without
holes between mesh patches (g and h).

(a) rendered image (b) rendered mask (c) inpaint naı̈ve (d) dilated mask (e) inpaint dilated
Figure 14. Importance of mask dilation during completion. In our second stage, we complete the scene mesh by filling in unobserved
regions (see Section 3.4). First, we sample camera poses that view such unobserved regions (a). The unobserved regions can have arbitrary
size (b). Directly inpainting only the masked regions from (b) gives distorted results, because the holes can be too small for reasonable
inpainting results (c). Instead, we inpaint small holes with a classical inpainting method [84] and dilate remaining holes to a larger size (d).
The resulting image after inpainting contains more reasonable structure (e).

Figure 15. Left: DreamFusion-Inward. Mid/Right: DreamFusion-
Outward from in- and out-of-distribution viewpoints.

RGB panoramas. We then extract the mesh similarly.

GAUDI [5]: Bautista and Guo et al. [5] present a method

to generate large-scale 3D scenes encoded into a NeRF [48]
representation. Their generative model can be conditioned
to produce 3D indoor scenes from text as input. In gen-
eral, each scene allows for a different distribution of camera
poses. Walls and objects are placed at different positions
in each scene, thus it depends on the scene to determine
valid camera poses. They model this joint latent distribution
of scenes and cameras. This allows to synthesize scenes
that can be rendered from corresponding camera trajecto-
ries (e.g., a scene is rendered in a forward motion). How-
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a bedroom with a king-size bed and a large wardrobe

Editorial Style Photo, Industrial Home Office, Steel Shelves, Concrete, Metal, Edison Bulbs, Exposed Ductwork
(a) Outpainting [59, 54] (b) Text2Light [11] (c) Blockade [38]

Figure 16. Intermediate results from baselines. We first produce these intermediate results, before unprojecting them into a 3D mesh.
(a) Outpainting [59, 54] generates an enlarged scene from a single viewpoint. (b) Text2Light [11] creates a panoramic image of a scene.
(c) Blockade [38] creates a panoramic image of a scene.

ever, it requires training supervision from 3D datasets that
contain ground-truth camera trajectories. This restricts the
method to the domain of a specific dataset of (synthetic,
low-resolution) 3D scenes, which is limited in size and di-
versity.

In contrast, we choose another approach to represent the
joint distribution of scenes and camera trajectories. Our
two-stage tailored viewpoint selection (see Section 3.4) first
creates the general scene layout and furniture from prede-
fined trajectories. We choose these trajectories such that the
camera poses do not intersect with generated geometry (see
Section 3.4 for more details). Then we inpaint remaining
holes by sampling additional poses. This allows us to gen-
erate complete scenes with varying layouts. Our resulting
mesh can be rendered from arbitrary viewpoints, i.e., it is
not bound to the specific trajectory used during generation.
Furthermore, our method can directly lift the generated im-
ages of a 2D text-to-image model into 3D, without requir-
ing supervised training from 3D datasets. This allows us to
generate meshes, that can represent a much larger and more
diverse set of indoor scenes with higher visual quality.

G. Additional Qualitative Results
We show additional qualitative results of our method in

Figure 17.
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Editorial Style Photo, Rustic Farmhouse, Living Room, Stone Fireplace, Wood, Leather, Wool

A small office with a chair, desk and monitors

A library with tall bookshelves, tables, chairs, and reading lamps

A large bathroom with shower, bathtub and a cozy wellness area
Figure 17. 3D scene generation results of our method. We show color and shaded geometry renderings from generated scenes with
corresponding text prompts. Our method synthesizes realistic meshes satisfying text descriptions. We remove the ceiling in the top-down
view for better visualization of the scene layout.
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