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1Technical University of Munich 2Meta
https://lukashoel.github.io/ViewDiff/

a stuffed 
bear sitting 

on a 
wooden box

Input Multi-view generated images

Figure 1. Multi-view consistent image generation. Our method takes as input a text description, or any number of posed input images, and
generates high-quality, multi-view consistent images of a real-world 3D object in authentic surroundings from any desired camera poses.

Abstract

3D asset generation is getting massive amounts of attention,
inspired by the recent success of text-guided 2D content
creation. Existing text-to-3D methods use pretrained text-
to-image diffusion models in an optimization problem or
fine-tune them on synthetic data, which often results in non-
photorealistic 3D objects without backgrounds. In this paper,
we present a method that leverages pretrained text-to-image
models as a prior, and learn to generate multi-view images in
a single denoising process from real-world data. Concretely,
we propose to integrate 3D volume-rendering and cross-
frame-attention layers into each block of the existing U-Net
network of the text-to-image model. Moreover, we design an
autoregressive generation that renders more 3D-consistent
images at any viewpoint. We train our model on real-world
datasets of objects and showcase its capabilities to generate
instances with a variety of high-quality shapes and textures

in authentic surroundings. Compared to the existing methods,
the results generated by our method are consistent, and have
favorable visual quality (−30% FID, −37% KID).

1. Introduction
In recent years, text-to-image (T2I) diffusion models [31, 35]
have emerged as cutting-edge technologies, revolutionizing
high-quality and imaginative 2D content creation guided by
text descriptions. These frameworks have found widespread
applications, including extensions such as ControlNet [59]
and DreamBooth [34], showcasing their versatility and poten-
tial. An intriguing direction in this domain is to use T2I mod-
els as powerful 2D priors for generating three-dimensional
(3D) assets. How can we effectively use these models to
create photo-realistic and diverse 3D assets?

Existing methods like DreamFusion [29], Fantasia3D [5],
and ProlificDreamer [52] have demonstrated exciting results
by optimizing a 3D representation through score distillation
sampling [29] from pretrained T2I diffusion models. The
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3D assets generated by these methods exhibit compelling
diversity. However, their visual quality is not consistently
as high as that of the images generated by T2I models. A
key step to obtaining 3D assets is the ability to generate
consistent multi-view images of the desired objects and their
surroundings. These images can then be fitted to 3D represen-
tations like NeRF [26] or NeuS [50]. HoloDiffusion [19] and
ViewsetDiffusion [42] train a diffusion model from scratch
using multi-view images and output 3D-consistent images.
GeNVS [4] and DFM [46] additionally produce object sur-
roundings, thereby increasing the realism of the generation.
These methods ensure (photo)-realistic results by training
on real-world 3D datasets [33, 62]. However, these datasets
are orders of magnitude smaller than the 2D dataset used to
train T2I diffusion models. As a result, these approaches pro-
duce realistic but less-diverse 3D assets. Alternatively, recent
works like Zero-1-to-3 [24] and One-2-3-45 [23] leverage
a pretrained T2I model and fine-tune it for 3D consistency.
These methods successfully preserve the diversity of gener-
ated results by training on a large synthetic 3D dataset [7].
Nonetheless, the produced objects can be less photo-realistic
and are without surroundings.

In this paper, we propose a method that leverages the
2D priors of the pretrained T2I diffusion models to produce
photo-realistic and 3D-consistent 3D asset renderings. As
shown in the first two rows of Fig. 1, the input is a text
description or an image of an object, along with the cam-
era poses of the desired rendered images. The proposed
approach produces multiple images of the same object in
a single forward pass. Moreover, we design an autoregres-
sive generation scheme that allows to render more images
at any novel viewpoint (Fig. 1, third row). Concretely, we
introduce projection and cross-frame-attention layers, that
are strategically placed into the existing U-Net architecture,
to encode explicit 3D knowledge about the generated object
(see Fig. 2). By doing so, our approach paves the way to fine-
tune T2I models on real-world 3D datasets, such as CO3D
[33], while benefiting from the large 2D prior encoded in
the pretrained weights. Our generated images are consistent,
diverse, and realistic renderings of objects.
To summarize, our contributions are:
• a method that utilizes the pretrained 2D prior of text-to-

image models and turns them into 3D-consistent image
generators. We train our approach on real-world multi-
view datasets, allowing us to produce realistic and high-
quality images of objects and their surroundings (Sec. 3.1).

• a novel U-Net architecture that combines commonly used
2D layers with 3D-aware layers. Our projection and cross-
frame-attention layers encode explicit 3D knowledge into
each block of the U-Net architecture (Sec. 3.2).

• an autoregressive generation scheme that renders images
of a 3D object from any desired viewpoint directly with
our model in a 3D-consistent way (Sec. 3.3).

2. Related Work

Text-To-2D. Denoising diffusion probabilistic models
(DDPM) [14] model a data distribution by learning to invert
a Gaussian noising process with a deep network. Recently,
DDPMs were shown to be superior to generative adversarial
networks [8], becoming the state-of-the-art framework for
image generation. Soon after, large text-conditioned models
trained on billion-scale data were proposed in Imagen [35]
or Dall-E 2 [31]. While [8] achieved conditional generation
via guidance with a classifier, [13] proposed classifier-free
guidance. ControlNet [59] proposed a way to tune the diffu-
sion outputs by conditioning on various modalities, such as
image segmentation or normal maps. Similar to ControlNet,
our method builds on the strong 2D prior of a pretrained
text-to-image (T2I) model. We further demonstrate how to
adjust this prior to generate 3D-consistent images of objects.

Text-To-3D. 2D DDPMs were applied to the generation of
3D shapes [30, 37, 44, 47, 49, 55, 64] or scenes [10, 15, 45]
from text descriptions. DreamFusion [29] proposed score dis-
tillation sampling (SDS) which optimizes a 3D shape whose
renders match the belief of the DDPM. Improved sample
quality was achieved by a second-stage mesh optimization
[5, 22], and smoother SDS convergence [38, 52]. Several
methods use 3D data to train a novel-view synthesis model
whose multi-view samples can be later converted to 3D, e.g.
conditioning a 2D DDPM on an image and a relative cam-
era motion to generate novel views [24, 53]. However, due
to no explicit modelling of geometry, the outputs are view-
inconsistent. Consistency can be improved with epipolar
attention [48, 63], or optimizing a 3D shape from multi-view
proposals [23]. Our work fine-tunes a 2D T2I model to gen-
erate renders of a 3D object; however, we propose explicit
3D unprojection and rendering operators to improve view-
consistency. Concurrently, SyncDreamer [25] also add 3D
layers in their 2D DDPM. We differ by training on real data
with backgrounds and by showing that autoregressive gener-
ation is sufficient to generate consistent images, making the
second 3D reconstruction stage expendable.

Diffusion on 3D Representations. Several works model
the distribution of 3D representations. While DiffRF [28]
leverages ground-truth 3D shapes, HoloDiffusion [19] is
supervised only with 2D images. HoloFusion [18] extends
this work with a 2D diffusion render post-processor. Im-
ages can also be denoised by rendering a reconstructing 3D
shape [1, 42]. Unfortunately, the limited scale of existing 3D
datasets prevents these 3D diffusion models from extrapo-
lating beyond the training distribution. Instead, we exploit
a large 2D pretrained DDPM and add 3D components that
are tuned on smaller-scale multi-view data. This leads to im-
proved multi-view consistency while maintaining the expres-
sivity brought by pretraining on billion-scale image data.
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Figure 2. Method Overview. We augment the U-Net architecture of pretrained text-to-image models with new layers in every U-Net
block. These layers facilitate communication between multi-view images in a batch, resulting in a denoising process that jointly produces
3D-consistent images. First, we replace self-attention with cross-frame-attention (yellow) which compares the spatial features of all views.
We condition all attention layers on pose (RT ), intrinsics (K), and intensity (I) of each image. Second, we add a projection layer (green)
into the inner blocks of the U-Net. It creates a 3D representation from multi-view features and renders them into 3D-consistent features. We
fine-tune the U-Net using the diffusion denoising objective (Eq. 3) at timestep t, supervised from captioned multi-view images.

3. Method
We propose a method that produces 3D-consistent images
from a given text or posed image input (see Fig. 1 top/mid).
Concretely, given desired output poses, we jointly generate
all images corresponding to the condition. We leverage pre-
trained text-to-image (T2I) models [31, 35] and fine-tune
them on multi-view data [33]. We propose to augment the
existing U-Net architecture by adding new layers into each
block (see Fig. 2). At test time, we can condition our method
on multiple images (see Fig. 1 bottom), which allows us to
autoregressively render the same object from any viewpoint
directly with the diffusion model (see Sec. 3.3).

3.1. 3D-Consistent Diffusion

Diffusion models [14, 39] are a class of gener-
ative models that learn the probability distribution
pθ(x0)=

∫
pθ(x0:T )dx1:T over data x0∼q(x0) and latent

variables x1:T=x1, . . . , xT . Our method is based on pre-
trained text-to-image models, which are diffusion models
pθ(x0 | c) with an additional text condition c. For clarity, we
drop the condition c for the remainder of this section.

To produce multiple images x0:N
0 at once, which are 3D-

consistent with each other, we seek to model their joint
probability distribution pθ(x

0:N
0 )=

∫
pθ(x

0:N
0:T )dx0:N

1:T . Simi-
larly to concurrent work by Liu et al. [25], we generate one
set of images pθ(x0:N

0 ) by adapting the reverse process of
DDPMs [14] as a Markov chain over all images jointly:

pθ(x
0:N
0:T ) := p(x0:N

T )

T∏
t=1

N∏
n=0

pθ(x
n
t−1 | x0:N

t ), (1)

where we start the generation from Gaussian noise sam-

pled separately per image p(xn
T ) = N (xn

T ;0, I), ∀n ∈
[0, N ]. We gradually denoise samples pθ(x

n
t−1 | x0:N

t ) =
N (xt−1;µ

n
θ (x

0:N
t , t), σ2

t I) by predicting the per-image
mean µn

θ (x
0:N
t , t) through a neural network µθ that is shared

between all images. Importantly, at each step, the model uses
the previous states x0:N

t of all images, i.e., there is commu-
nication between images during the model prediction. We
refer to Sec. 3.2 for details on how this is implemented. To
train µθ, we define the forward process as a Markov chain:

q(x0:N
1:T | x0:N

0 ) =

T∏
t=1

N∏
n=0

q(xn
t | xn

t−1), (2)

where q(xn
t | xn

t−1) = N (xn
t ;
√
1− βtx

n
t−1, βtI) and

β1, . . . , βT define a constant variance schedule, i.e., we ap-
ply separate noise per image to produce training samples.

We follow Ho et al. [14] by learning a noise predictor ϵθ
instead of µθ. This allows to train ϵθ with an L2 loss:

Ex0:N
0 ,ϵ0:N∼N (0,I),n

[∥∥ϵn − ϵnθ (x
0:N
t , t)

∥∥2] . (3)

3.2. Augmentation of the U-Net architecture

To model a 3D-consistent denoising process over all im-
ages, we predict per-image noise ϵnθ (x

0:N
t , t) through a neu-

ral network ϵθ. This neural network is initialized from the
pretrained weights of existing text-to-image models, and is
usually defined as a U-Net architecture [31, 35]. We seek to
leverage the previous states x0:N

t of all images to arrive at
a 3D-consistent denoising step. To this end, we propose to
add two layers into the U-Net architecture, namely a cross-
frame-attention layer and a projection layer. We note that the
predicted per-image noise needs to be image specific, since
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all images are generated starting from separate Gaussian
noise. It is therefore important to keep around 2D layers
that act separately on each image, which we achieve by
finetuning the existing ResNet [11] and ViT [9] blocks. We
summarize our architecture in Fig. 2. In the following, we
discuss our two proposed layers in more detail.
Cross-Frame Attention. Inspired by video diffusion [54,
56], we add cross-frame-attention layers into the U-Net archi-
tecture. Concretely, we modify the existing self-attention lay-
ers to calculate CFAttn(Q,K, V )=softmax

(
QKT

√
d

)
V with

Q = WQhi, K = WK [hj ]j ̸=i, V = WV [hj ]j ̸=i, (4)

where WQ,WK ,WV are the pretrained weights for feature
projection, and hi∈RC×H×W is the input spatial feature of
each image i∈[1, N ]. Intuitively, this matches features across
all frames, which allows generating the same global style.

Additionally, we add a conditioning vector to all cross-
frame and cross-attention layers to inform the network about
the viewpoint of each image. First, we add pose information
by encoding each image’s camera matrix p ∈ R4×4 into an
embedding z1 ∈ R4 similar to Zero-1-to-3 [24]. Addition-
ally, we concatenate the focal length and principal point of
each camera into an embedding z2 ∈ R4. Finally, we provide
an intensity encoding z3 ∈ R2, which stores the mean and
variance of the image RGB values. At training time, we set
z3 to the true values of each input image, and at test time,
we set z3=[0.5, 0] for all images. This helps to reduce the
view-dependent lighting differences contained in the dataset
(e.g., due to different camera exposure). We construct the
conditioning vector as z=[z1, z2, z3], and add it through a
LoRA-linear-layer [16] W ′Q to the feature projection matrix
Q. Concretely, we compute the projected features as:

Q = WQhi + s ·W ′Q[hi; z], (5)

where we set s=1. Similarly, we add the condition via W ′K

to K, and W ′V to V .
Projection Layer. Cross-frame attention layers are helpful
to produce globally 3D-consistent images. However, the
objects do not precisely follow the specified poses, which
leads to view-inconsistencies (see Fig. 5 and Tab. 3). To this
end, we add a projection layer into the U-Net architecture
(Fig. 3). The idea of this layer is to create 3D-consistent
features that are then further processed by the next U-Net
layers (e.g. ResNet blocks). By repeating this layer across all
stages of the U-Net, we ensure that the per-image features
are in a 3D-consistent space. We do not add the projection
layer to the first and last U-Net blocks, as we saw no benefit
from them at these locations. We reason that the network
processes image-specific information at those stages and
thus does not need a 3D-consistent feature space.

Inspired by multi-view stereo literature [3, 17, 41], we
create a 3D feature voxel grid from all input spatial features

A
ggregator M

L
P

V
ol

um
e 

R
en

de
re

r

input posed 
features

output 
features

S
ca

le
N

et
 

(1
x1

 C
N

N
)

3D CNN

E
xp

an
dN

et
(1

x1
 C

N
N

)

C
om

pressN
et

(1x1 C
N

N
)

Figure 3. Architecture of the projection layer. We produce 3D-
consistent output features from posed input features. First, we
unproject the compressed image features into 3D and aggregate
them into a joint voxel grid with an MLP. Then we refine the voxel
grid with a 3D CNN. A volume renderer similar to NeRF [26]
renders 3D-consistent features from the grid. Finally, we apply a
learned scale function and expand the feature dimension.

h0:N
in ∈ RC×H×W by projecting each voxel into each image

plane. First, we compress h0:N
in with a 1×1 convolution to

a reduced feature dimension C ′=16. We then take the bilin-
early interpolated feature at the image plane location and
place it into the voxel. This way, we create a separate voxel
grid per view, and merge them into a single grid through an
aggregator MLP. Inspired by IBRNet [51], the MLP predicts
per-view weights followed by a weighted feature average.
We then run a small 3D CNN on the voxel grid to refine
the 3D feature space. Afterwards, we render the voxel grid
into output features h0:N

out ∈ RC′×H×W with volumetric ren-
dering similar to NeRF [26]. We dedicate half of the voxel
grid to foreground and half to background and apply the
background model from MERF [32] during ray-marching.

We found it is necessary to add a scale function after the
volume rendering output. The volume renderer typically uses
a sigmoid activation function as the final layer during ray-
marching [26]. However, the input features are defined in an
arbitrary floating-point range. To convert h0:N

out back into the
same range, we non-linearly scale the features with 1×1 con-
volutions and ReLU activations. Finally, we expand h0:N

out to
the input feature dimension C. We refer to the supplemental
material for details about each component’s architecture.

3.3. Autoregressive Generation

Our method takes as input multiple samples x0:N
t at once

and denoises them 3D-consistently. During training, we set
N=5, but can increase it at inference time up to memory
constraints, e.g., N=30. However, we want to render an
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object from any possible viewpoint directly with our network.
To this end, we propose an autoregressive image generation
scheme, i.e., we condition the generation of next viewpoints
on previously generated images. We provide the timesteps
t0:N of each image as input to the U-Net. By varying t0:N ,
we can achieve different types of conditioning.

Unconditional Generation. All samples are initialized to
Gaussian noise and are denoised jointly. The timesteps t0:N

are kept identical for all samples throughout the reverse pro-
cess. We provide different cameras per image and a single
text prompt. The generated images are 3D-consistent, show-
ing the object from the desired viewpoints (Figs. 4 and 5).

Image-Conditional Generation. We divide the total num-
ber of samples N=nc+ng into a conditional part nc and
generative part ng. The first nc samples correspond to im-
ages and cameras that are provided as input. The other ng
samples should generate novel views that are similar to the
conditioning images. We start the generation from Gaussian
noise for the ng samples and provide the un-noised images
for the other samples. Similarly, we set t0:nc=0 for all de-
noising steps, while gradually decreasing tng:N .

When nc=1, our method performs single-image recon-
struction (Fig. 6). Setting nc>1 allows to autoregressively
generate novel views from previous images (Fig. 1 bottom).
In practice, we first generate one batch of images uncondi-
tionally and then condition the next batches on a subset of
previous images. This allows us to render smooth trajectories
around 3D objects (see the supplemental material).

3.4. Implementation Details

Dataset. We train our method on the large-scale CO3Dv2
[33] dataset, which consists of posed multi-view images of
real-world objects. Concretely, we choose the categories
Teddybear, Hydrant, Apple, and Donut. Per cate-
gory, we train on 500–1000 objects with each 200 images
at resolution 256×256. We generate text captions with the
BLIP-2 model [21] and sample one of 5 proposals per object.

Training. We base our model on a pretrained latent-
diffusion text-to-image model. We only fine-tune the U-Net
and keep the VAE encoder and decoder frozen. In each itera-
tion, we select N=5 images and their poses. We sample one
denoising timestep t∼[0, 1000], add noise to the images ac-
cording to Eq. 2, and compute the loss according to Eq. 3. In
the projection layers, we skip the last image when building
the voxel grid, which enforces to learn a 3D representation
that can be rendered from novel views. We train our method
by varying between unconditional and image-conditional
generation (Sec. 3.3). Concretely, with probabilities p1=0.25
and p2=0.25 we provide the first and/or second image as
input and set the respective timestep to zero. Similar to Ruiz
et al. [34], we create a prior dataset with the pretrained text-
to-image model and use it during training to maintain the 2D

Table 1. Quantitative comparison of unconditional image gener-
ation. We report average FID [12] and KID [2] per category and
improve by a significant margin. This signals that our images are
more similar to the distribution of real images in the dataset. We
mask away the background for our method and the real images to
ensure comparability of numbers with the baselines.

Category HF [18] VD [42] Ours

FID↓ KID↓ FID↓ KID↓ FID↓ KID↓
Teddybear 81.93 0.072 201.71 0.169 49.39 0.036
Hydrant 61.19 0.042 138.45 0.118 46.45 0.033
Donut 105.97 0.091 199.14 0.136 68.86 0.054
Apple 62.19 0.056 183.67 0.149 56.85 0.043

prior (see supplemental material for details).
We fine-tune the model on 2× A100 GPUs for 60K it-

erations (7 days) with a total batch size of 64. We set the
learning rate for the volume renderer to 0.005 and for all
other layers to 5×10−5, and use the AdamW optimizer [35].
During inference, we can increase N and generate up to 30
images/batch on an RTX 3090 GPU. We use the UniPC [61]
sampler with 10 denoising steps, which takes 15 seconds.

4. Results
Baselines. We compare against recent state-of-the-art
works for 3D generative modeling. Our goal is to create
multi-view consistent images from real-world, realistic ob-
jects with authentic surroundings. Therefore, we consider
methods that are trained on real-world datasets and select
HoloFusion (HF) [18], ViewsetDiffusion (VD) [42], and
DFM [46]. We show results on two tasks: unconditional gen-
eration (Sec. 4.1) and single-image reconstruction (Sec. 4.2).

Metrics. We report FID [12] and KID [2] as common met-
rics for 2D/3D generation and measure the multi-view con-
sistency of generated images with peak signal-to-noise ratio
(PSNR), structural similarity index (SSIM), and LPIPS [60].
To ensure comparability, we evaluate all metrics on images
without backgrounds, as not every baseline models them.

4.1. Unconditional Generation

Our method can be used to generate 3D-consistent views of
an object from any pose with only text as input by using our
autoregressive generation (Sec. 3.3). Concretely, we sample
an (unobserved) image caption from the test set for the first
batch and generate N=10 images with a guidance scale [13]
of λcfg=7.5. We then set λcfg=0 for subsequent batches, and
create a total of 100 images per object.

We evaluate against HoloFusion (HF) [18] and Viewset-
Diffusion (VD) [42]. We report quantitative results in Tab. 1
and qualitative results in Figs. 4 and 5. HF [18] creates di-
verse images that sometimes show view-dependent floating
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Figure 4. Unconditional image generation of our method and baselines. We show renderings from different viewpoints for multiple
objects and categories. Our method produces consistent objects and backgrounds. Our textures are sharper in comparison to baselines. Please
see the supplemental material for more examples and animations.

artifacts (see Fig. 5). VD [42] creates consistent but blurry
images. In contrast, our method produces images with back-
grounds and higher-resolution object details. Please see the
suppl. material for more examples and animated results.

4.2. Single-Image Reconstruction

Our method can be conditioned on multiple images in or-
der to render any novel view in an autoregressive fashion

(Sec. 3.3). To measure the 3D-consistency of our generated
images, we compare single-image reconstruction against
ViewsetDiffusion (VD) [42] and DFM [46]. Concretely, we
sample one image from the dataset and generate 20 images
at novel views also sampled from the dataset. We follow
Szymanowicz et al. [42] and report the per-view maximum
PSNR/SSIM and average LPIPS across multiple objects and
viewpoints for all methods. We report quantitative results in
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Figure 5. Multi-view consistency of unconditional image generation. HoloFusion (HF) [18] has view-dependent floating artifacts (the
base in first row). ViewsetDiffusion (VD) [42] has blurrier renderings (second row). Without the projection layer, our method has no precise
control over viewpoints (third row). Without cross-frame-attention, our method suffers from identity changes of the object (fourth row). Our
full method produces detailed images that are 3D-consistent (fifth row).

Table 2. Quantitative comparison of single-image reconstruction. Given a single image as input, we measure the quality of novel views
through average PSNR, SSIM, and LPIPS [60] per category. We mask away the generated backgrounds to ensure comparability across all
methods. We improve over VD [42] while being on-par with DFM [46].

Method Teddybear Hydrant Donut Apple

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
VD [42] 19.68 0.70 0.30 22.36 0.80 0.19 18.27 0.68 0.14 19.54 0.64 0.31
DFM [46] 21.81 0.82 0.16 22.67 0.83 0.12 23.91 0.86 0.10 25.79 0.91 0.07
Ours 21.98 0.84 0.13 22.49 0.85 0.11 21.50 0.85 0.18 25.94 0.91 0.11

Tab. 2 and show qualitative results in Fig. 6. VD [42] creates
plausible results without backgrounds. DFM [46] creates
consistent results with backgrounds at a lower image reso-
lution (128×128). Our method produces higher resolution
images with similar reconstruction results and backgrounds
as DFM [46]. Please see the supplemental material for more
examples and animated results.

4.3. Ablations

The key ingredients of our method are the cross-frame-
attention and projection layers that we add to the U-Net
(Sec. 3.2). We highlight their importance in Tab. 3 and Fig. 5.

How important are the projection layers? They are nec-
essary to allow precise control over the image viewpoints
(e.g., Fig. 5 row 3 does not follow the specified rotation).
Our goal is to generate a consistent set of images from any
viewpoint directly with our model (Sec. 3.3). Being able
to control the pose of the object is therefore an essential
part of our contribution. The projection layers build up a
3D representation of the object that is explicitly rendered
into 3D-consistent features through volume rendering. This
allows us to achieve viewpoint consistency, as also demon-
strated through single-image reconstruction (Tab. 3).
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Figure 6. Single-image reconstruction of our method and base-
lines. Given one image/pose as input, our method produces plausi-
ble novel views that are consistent with the real shape and texture.
We can also produce detailed backgrounds that match the input.
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Figure 7. Diversity of generated results. We condition our method
on text input, which allows to create objects in a desired style.
We show samples for hand-crafted text descriptions that combine
attributes (e.g., color, shape, background) in a novel way. Each
row shows a different generation proposal from our method and we
denote the object category (Teddybear, Hydrant) as [C]. This
showcases the diversity of generated results, i.e., multiple different
objects are generated for the same description.

How important are cross-frame-attention layers? They
are necessary to create images of the same object. Without
them, the teddybear in Fig. 5 (row 4) has the same general
color scheme and follows the specified poses. However, dif-
ferences in shape and texture lead to an inconsistent set of
images. We reason that the cross-frame-attention layers are

Table 3. Quantitative comparison of our method and ablations.
We report average PSNR, SSIM, LPIPS [60], FID [12], and KID
[2] over the Teddybear and Hydrant categories. We compare
against dropping the projection layer (‘Ours no proj’) and the cross-
frame-attention layer (‘Ours no cfa’) from the U-Net (see Sec. 3.2).
While still producing high-quality images with similar FID/KID
scores, this demonstrates that our proposed layers are necessary to
obtain 3D-consistent images.

Method PSNR↑ SSIM↑ LPIPS↓ FID↓ KID↓
Ours (no proj) 16.55 0.71 0.29 47.95 0.034
Ours (no cfa) 18.15 0.76 0.25 47.93 0.034
Ours 22.24 0.84 0.11 47.92 0.034

essential for defining a consistent object identity.

Does the 2D prior help? We utilize a 2D prior in form
of the pretrained text-to-image model that we fine-tune in a
3D-consistent fashion (Sec. 3.1). This enables our method to
produce sharp and detailed images of objects from different
viewpoints. Also, we train our method on captioned images
to retain the controllable generation through text descriptions
(Sec. 3.4). We show the diversity and controllability of our
generations in Fig. 7 with hand-crafted text prompts. This
highlights that, after finetuning, our model is still faithful to
text input, and can combine attributes in a novel way, i.e.,
our model learns to extrapolate from the training set.

4.4. Limitations

Our method generates 3D-consistent, high-quality images of
diverse objects according to text descriptions or input images.
Nevertheless, there are several limitations. First, our method
sometimes produces images with slight inconsistency, as
shown in the supplement. Since the model is fine-tuned on a
real-world dataset consisting of view-dependent effects (e.g.,
exposure changes), our framework learns to generate such
variations across different viewpoints. A potential solution
is to add lighting condition through a ControlNet [59]. Sec-
ond, our work focuses on objects, but similarly scene-scale
generation on large datasets [6, 57] can be explored.

5. Conclusion
We presented ViewDiff, a method that, given text or image
input, generates 3D-consistent images of real-world objects
that are placed in authentic surroundings. Our method lever-
ages the expressivity of large 2D text-to-image models and
fine-tunes this 2D prior on real-world 3D datasets to pro-
duce diverse multi-view images in a joint denoising process.
The core insight of our work are two novel layers, namely
cross-frame-attention and the projection layer (Sec. 3.2).
Our autoregressive generation scheme (Sec. 3.3) allows to
directly render high-quality and realistic novel views of a
generated 3D object.
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ViewDiff: 3D-Consistent Image Generation with Text-to-Image Models

Supplementary Material

A. Supplemental Video
Please watch our attached video 1 for a comprehensive evalu-
ation of the proposed method. We include rendered videos of
multiple generated objects from novel trajectories at differ-
ent camera elevations (showcasing unconditional generation
as in Fig. 4). We also show animated results for single-image
reconstruction (Fig. 6) and sample diversity (Fig. 7).

B. Training Details
B.1. Data Preprocessing

We train our method on the large-scale CO3Dv2 [33] dataset,
which consists of posed multi-view images of real-world
objects. Concretely, we choose the categories Teddybear,
Hydrant, Apple, and Donut. Per category, we train on
500–1000 objects, with 200 images at resolution 256×256
for each object. We generate text captions with the BLIP-2
model [21] and sample one of 5 proposals per object during
each training iteration. With probability p1=0.5 we select
the training images randomly per object and with probability
p2=0.5 we select consecutive images from the captured
trajectory that goes around the object. We randomly crop
the images to a resolution of 256×256 and normalize the
camera poses such that the captured object lies in an axis-
aligned unit cube. Specifically, we follow Szymanowicz et al.
[42] and calculate a rotation transformation such that all
cameras align on an axis-aligned plane. Then, we translate
and scale the camera positions, such that their bounding box
is contained in the unit cube.

B.2. Prior Preservation Loss

Inspired by Ruiz et al. [34], we create a prior preservation
dataset of 300 images and random poses per category with
the pretrained text-to-image model. We use it during training
to maintain the image generation prior. This has been shown
to be successful when fine-tuning a large 2D diffusion model
on smaller-scale data [34]. For each of the 300 images we
randomly sample a text description from the training set
of CO3Dv2 [33]. We then generate an image with the pre-
trained text-to-image model given that text description as
input. During each training iteration we first calculate the
diffusion objective (Eq. 3) on the N=5 multi-view images
sampled from the dataset and obtain Ld. Then, we sample
one image of the prior preservation dataset and apply noise
to it (Eq. 2). Additionally, we sample a camera (pose and
intrinsics) that lies within the distribution of cameras for
each object category. We then similarly calculate the loss

1https://youtu.be/SdjoCqHzMMk

(Eq. 3) on the prediction of our model and obtain Lp. Since
we only sample a single image instead of multiple, this does
not train the diffusion model on 3D-consistency. Instead,
it trains the model to maintain its image generation prior.
Concretely, the cross-frame-attention layers are treated again
as self-attention layers and the projection layers perform
unprojection and rendering normally, but only from a single
image as input. In practice, we scale the prior preservation
loss with factor 0.1 and add it to the dataset loss to obtain
the final loss: L=Ld + 0.1Lp.

C. Evaluation Details

C.1. Autoregressive Generation

We showcase unconditional generation of our method in
Sec. 4.1. To obtain these results, we employ our autoregres-
sive generation scheme (Sec. 3.3). Concretely, we sample
an (unobserved) image caption from the test set for the first
batch and generate N=10 images with a guidance scale [13]
of λcfg=7.5. Then we set λcfg=0 for subsequent batches
and create a total of 100 images per object. We found that
the results are most consistent, if the first batch generates
N images in a 360° rotation around the object. This way,
we globally define the object shape and texture in a single
denoising forward pass. All subsequent batches are condi-
tioned on all N images of the first batch. To render a smooth
trajectory, we sample the camera poses in other batches in a
sequence. That is, the next N images are close to each other
with only a small rotation between them. We visualize this
principle in our supplemental video.

C.2. Metric Computation

We give additional details on how we computed the metrics
as shown in Tabs. 1 to 3. To ensure comparability, we evalu-
ate all metrics on images without backgrounds as not every
baseline models them.

FID/KID. We report FID [12] and KID [2] as common
metrics for 2D/3D generation. We calculate these metrics
to compare unconditional image generation against Holo-
Fusion [18] and ViewsetDiffusion [42]. This quantifies the
similarity of the generated images to the dataset and thereby
provides insight about their quality (e.g., texture details and
sharpness) and diversity (e.g., different shapes and colors).
Following the baselines [18, 19], we sample 20,000 images
from the CO3Dv2 [33] dataset for each object category. We
remove the background from each object by using the fore-
ground mask probabilities contained in the dataset. Similarly,
we generate 20,000 images with each method and remove the
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different sharpness different lighting

Figure 8. Limitations. Our method generates consistent images at
different camera poses. However, there can be slight inconsistencies
like different sharpness and lighting between images. Since our
model is fine-tuned on a real-world dataset consisting of view-
dependent effects (e.g., exposure changes), our framework learns
to generate such variations across different viewpoints.

background from our generated images with CarveKit [36].
For our method, we set the text prompt to an empty string
during the generation to facilitate complete unconditional
generation.

PSNR/SSIM/LPIPS. We measure the multi-view consis-
tency of generated images with peak signal-to-noise ratio
(PSNR), structural similarity index (SSIM), and LPIPS [60].
We calculate these metrics to compare single-image recon-
struction against ViewsetDiffusion [42] and DFM [46]. We
resize all images to the resolution 256×256 to obtain com-
parable numbers. First, we obtain all objects that were not
used during training for every method (hereby obtaining a
unified test set across all methods). Then, we randomly sam-
ple 20 posed image pairs from each object. We use the first
image/pose as input and predict the novel view at the second
pose. We then calculate the metrics as the similarity of the
prediction to the ground-truth second image. We remove the
background from the prediction and ground-truth images by
obtaining the foreground mask with CarveKit [36] from the
prediction image. We use the same mask to remove back-
ground from both images. This way, we calculate the metrics
only on similarly masked images. If the method puts the
predicted object at a wrong position, we would thus quantify
this as a penalty by comparing the segmented object to the
background of the ground-truth image at that location.

D. Limitations
Our method generates 3D-consistent, high-quality images of
diverse objects according to text descriptions or input images.
Nevertheless, there are several limitations. Our method some-
times produces images with slight inconsistency, as shown
in Fig. 8. Since the model is fine-tuned on a real-world
dataset consisting of view-dependent effects (e.g., exposure
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Figure 9. Architecture of projection layer components. The
projection layer contains the components CompressNet, ScaleNet
(green), and ExpandNet. We implement these networks as small
CNN networks.
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Figure 10. Architecture of projection layer components. The
projection layer contains the component 3D CNN. We implement
this networks as a series of 5 3D ResNet [11] blocks with timestep
embeddings.

changes), our framework learns to generate such variations
across different viewpoints. This can lead to flickering arti-
facts when rendering a smooth video from a generated set
of images (e.g., see the supplemental video). A potential
solution is to (i) filter blurry frames from the dataset, and (ii)
add lighting-condition through a ControlNet [59].

E. Projection Layer Architecture

We add a projection layer into the U-Net architecture of pre-
trained text-to-image models (see Fig. 3 and Sec. 3.2). The
idea of this layer is to create 3D-consistent features that are
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Figure 11. Architecture of projection layer components. The projection layer contains the component Aggregator MLP. First, we combine
per-view voxel grids with their ray-direction/depth encodings (blue) and the temporal embedding (green). Inspired by IBRNet [51], the
MLPs (pink) then predict per-view weights followed by a weighted feature average. Finally, we combine the per-voxel weights with the
mean and variance grids (yellow) to obtain the aggregated feature grid.

then further processed by the next U-Net layers (e.g. ResNet
blocks). Concretely, we create a 3D representation from all
input features in form of a voxel grid, that is defined inside
of the axis-aligned unit cube. We set the 3D feature dimen-
sion as C ′ = 16 and define the base resolution of the voxel
grid as 128×128×128. Throughout the U-Net, we apply
the same up/downsampling as for the 2D features, i.e., the
resolution decreases to 8×8×8 in the bottleneck layer. The
projection layer consists of multiple network components.
We show detailed network architectures of these components
in Figs. 9 to 11.

E.1. CompressNet and ExpandNet

We apply the 3D layers on features that are defined in a
unified dimensionality of C ′=16. Since our 3D layers act
on dense voxel grids this helps to lower the memory require-
ments. To convert to/from this compressed feature space, we
employ small CNNs, as depicted in Fig. 9. In these schemat-
ics, we define N as the number of images in a batch, C as
the uncompressed feature dimension and I as the spatial
dimension of the features.

E.2. Aggregator MLP

After creating per-view voxel grids via raymarching (see
Sec. 3.2), we combine N voxel grids into one voxel grid that
represents the features for all viewpoints. To this end, we
employ a series of networks, as depicted in Fig. 11. In these
schematics, we define N as the number of images in a batch,
C ′ as the compressed feature dimension, T as the dimension
of the timestep embedding, G as the 3D voxel grid resolution,
and I as the spatial dimension of the features. The MLPs are
defined as a sequence of linear layers of specified input and
output dimensionality with ELU activations in between.

First, we concatenate the voxel features with an encod-
ing of the ray-direction and depth that was used to project
the image features into each voxel. We also concatenate the
timestep embedding to each voxel. This allows to combine
per-view voxel grids of different timesteps (e.g., as proposed
in image conditional generation in Sec. 3.3). It is also use-
ful to inform the subsequent networks about the denoising
timestep, which allows to perform the aggregation differ-
ently throughout the denoising process. Inspired by IBRNet
[51], a set of MLPs then predict per-view weights followed
by a weighted feature average. We perform this averaging
operation elementwise: since all voxel grids are defined in
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the same unit cube, we can combine the same voxel across
all views. Finally, we combine the per-voxel weights with
the mean and variance grids to obtain the final aggregated
feature grid.

E.3. 3D CNN

After aggregating the per-view voxel grids into a joint grid,
we further refine that grid. The goal of this network is to add
additional details to the feature representation such as the
global orientation of the shape. To achieve this, we employ a
series of 5 3D ResNet [11] blocks with timestep embeddings,
as depicted in Fig. 10. In these schematics, we define C ′ as
the compressed feature dimension, T as the dimension of the
timestep embedding, and G as the 3D voxel grid resolution.

E.4. Volume Renderer and ScaleNet

After we obtain a refined 3D feature representation in form
of the voxel grid, we render that grid back into per-view
image features (see Fig. 3). Concretely, we employ a vol-
ume renderer similar to NeRF [26] and implement it as a
grid-based renderer similar to DVGO [40]. This allows to
render features in an efficient way that is not a bottleneck
for the forward pass of the network. In contrast to NeRF,
we render down features instead of rgb colors. Concretely,
we sample 128 points along a ray and for each point we
trilinearly interpolate the voxel grid features to obtain a fea-
ture vector f ∈ RC′

. Then, we employ a small 3-layer MLP
that transforms f into the density d ∈ R and a sampled
feature s ∈ RC′

. Using alpha-compositing, we accumulate
all pairs (d0, s0), ..., (d127, s127) along a ray into a final ren-
dered feature r ∈ RC′

. We dedicate half of the voxel grid to
foreground and half to background and apply the background
model from MERF [32] during ray-marching.

We found it is necessary to add a scale function after the
volume rendering output. The volume renderer typically uses
a sigmoid activation function as the final layer during ray-
marching [26]. However, the input features are defined in
an arbitrary floating-point range. To convert r back into the
same range, we non-linearly scale the features with 1×1 con-
volutions and ReLU activations. We depict the architecture
of this ScaleNet as the green layers in Fig. 9.

F. Additional Results
F.1. Comparison To Additional Baselines

We compare against additional text-to-3D baselines that
also utilize a pretrained text-to-image model in Fig. 12. We
choose ProlificDreamer [52] as representative of score distil-
lation [29] methods. Rendered images are less photorealistic
since the optimization may create noisy surroundings and
over-saturated textures. Similar to us, Zero123-XL [24] and
SyncDreamer [25] circumvent this problem by generating
3D-consistent images directly. However, they finetune on a

Input Image Zero123-XL [24] SyncDreamer [25] Ours
teddy sitting on a wooden box donut on top of a white plate

ProlificDreamer [52] Ours ProlificDreamer [52] Ours

Figure 12. Comparison to other text-to-3D baselines from image-
(top) and text-input (bottom). Our method produces images with
higher photorealism and authentic surroundings.

Table 4. Comparison of consistency (mid) and photorealism
(FID). Our method shows similar 3D-consistency as baselines,
while producing more photorealistic images.

Method Ewarp ↓ #Points↑ PSNR↑ FID↓
DFM [46] 0.0034 17,470 32.32 —
VD [42] 0.0021 — — —
HF [18] 0.0031 — — —
SyncDreamer [25] 0.0042 4,126 33.81 135.78
Zero123-XL (SDS) [24] 0.0039 — — 126.83
Ours 0.0036 18,358 33.65 85.08

large synthetic dataset [7] instead of real-world images. As
a result, their images have synthetic textures and lighting
effects and no backgrounds. We quantify this in Tab. 4 with
the FID between sets of generated images (conditioned on
an input view), and real images of the same object (with-
out backgrounds). Our method has better scores since the
generated images are more photorealistic.

We calculate temporal stability (Ewarp) of video render-
ings with optical flow warping following [20]. Also, we mea-
sure the consistency of generated images for methods that
do not directly produce a 3D representation. Concretely, we
report the number of point correspondences following [25]
and the PSNR between NeRF [26] re-renderings and input
images. Table 4 shows that our method is on-par with base-
lines in terms of 3D consistency, while generating higher
quality images.

F.2. Unconditional Generation

We generate images in a similar fashion as in Sec. 4.1. Con-
cretely, we sample an (unobserved) image caption from the
test set for the first batch and generate N=10 images with
a guidance scale [13] of λcfg=7.5. Then we set λcfg=0
for subsequent batches and create a total of 100 images per
object. We show additional results in Figs. 13 to 16.
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a teddy bear sitting on a colorful rug

a stuffed panda bear with a heart on its chest

a stuffed animal sitting on a tile floor

a black and white teddybear with blue feet

a teddy bear laying on a bed

a stuffed animal sitting on a chair

a teddy bear sitting on the ground in the dark

a stuffed bear wearing a red hat and a cloak

Figure 13. Additional examples of our method. Given a text prompt as input, we generate a smooth trajectory around an object with our
autoregressive generation scheme (Sec. 3.3). Please see the supplemental video for animations of the generated samples.
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a red and white fire hydrant on a brick floor

a yellow and green fire hydrant sitting on the ground

a yellow fire hydrant sitting on the sidewalk

a red fire hydrant in the snow

a fire hydrant on the sidewalk

a red and blue fire hydrant

a blue and white fire hydrant sitting in the grass

a green fire hydrant with a tag on it

Figure 14. Additional examples of our method. Given a text prompt as input, we generate a smooth trajectory around an object with our
autoregressive generation scheme (Sec. 3.3). Please see the supplemental video for animations of the generated samples.
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a glazed donut sitting on a marble counter

a donut on a clear plate

a chocolate donut with sprinkles on it

a donut on a plate with a hole in it

a large donut on a plate on a table

a yellow plate with a donut on it

a white plate with a donut on it

a donut sitting on a cloth

Figure 15. Additional examples of our method. Given a text prompt as input, we generate a smooth trajectory around an object with our
autoregressive generation scheme (Sec. 3.3). Please see the supplemental video for animations of the generated samples.
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a red apple on a white counter top

a green apple sitting on a counter

a red and yellow apple

a red and yellow apple

a single apple on a table cloth with a floral pattern

a red and yellow apple on a wooden floor

a red apple sitting on a black leather couch

a red apple on a blue and white patterned table cloth

Figure 16. Additional examples of our method. Given a text prompt as input, we generate a smooth trajectory around an object with our
autoregressive generation scheme (Sec. 3.3). Please see the supplemental video for animations of the generated samples.
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G. Optimizing a NeRF/NeuS
Our method is capable of directly rendering images from
novel camera positions in an autoregressive generation
scheme (see Sec. 3.3). This allows to render smooth trajecto-
ries around the same 3D object at arbitrary camera positions.
Depending on the use case, it might be desirable to obtain an
explicit 3D representation of a generated 3D object (instead
of using our method to autoregressively render new images).
We demonstrate that our generated images can be used di-
rectly to optimize a NeRF [26] or NeuS [50]. Concretely, we
optimize a NeRF with the Instant-NGP [27] implementation
from our generated images for 10K iterations (2 minutes).
Also, we extract a mesh by optimizing a NeuS with the neus-
facto implementation from SDFStudio [43, 58] for 20K it-
erations (15 minutes). First, we remove the background of
our generated images by applying Carvekit [36] and then
start the optimization with these images. We show results in
Figs. 17 to 19.
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Figure 17. NeRF [26] optimization from our generated images. Left: given a text prompt as input, we generate a smooth trajectory around
an object with our autoregressive generation scheme (Sec. 3.3). In total, we generate 100 images at different camera positions. Right: we
create a NeRF using Instant-NGP [27] from the generated images. We show the camera positions of the generated images on top of the
optimized radiance field.
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Figure 18. NeRF [26] optimization from our generated images. Left: given a text prompt as input, we generate a smooth trajectory around
an object with our autoregressive generation scheme (Sec. 3.3). In total, we generate 100 images at different camera positions. Right: we
create a NeRF using Instant-NGP [27] from the generated images. We show the camera positions of the generated images on top of the
optimized radiance field.

Figure 19. Mesh extraction from our generated images. Given a text prompt as input, we generate a smooth trajectory around an object
with our autoregressive generation scheme (Sec. 3.3). In total, we generate 100 images at different camera positions and mask-out the
background with Carvekit [36]. We then optimize a NeuS [50] and extract the mesh from it (last 4 images per row).
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