
3DGS-LM: Faster Gaussian-Splatting Optimization with Levenberg-Marquardt

Lukas Höllein1 Aljaž Božič2 Michael Zollhöfer2 Matthias Nießner1

1Technical University of Munich 2Meta
https://lukashoel.github.io/3DGS-LM/

400 600 800 1000
Time (s)

24.50

24.75

25.00

25.25

25.50

25.75

26.00

26.25

26.50

PS
N

R
 (d

b)

119.0s

92.0s

54.9s

3DGS + Ours
3DGS
DISTWAR + Ours
DISTWAR
Taming-3DGS + Ours
Taming-3DGS

3DGS, 692s, 18.78 PSNR 3DGS+Ours, 692s, 22.10 PSNR Ground-Truth Image

3DGS, 657s, 21.51 PSNR 3DGS+Ours, 657s, 24.12 PSNR Ground-Truth Image

Figure 1. Our method accelerates 3D Gaussian Splatting (3DGS) [20] reconstruction by replacing the ADAM optimizer with a tailored
Levenberg-Marquardt. Left: starting from the same initialization, our method converges 30% faster on the Tanks&Temples “Train” scene.
Right: after the same amount of time, our method produces higher quality renderings (e.g., better brightness and contrast).

Abstract

We present 3DGS-LM, a new method that accelerates
the reconstruction of 3D Gaussian Splatting (3DGS) by
replacing its ADAM optimizer with a tailored Levenberg-
Marquardt (LM). Existing methods reduce the optimiza-
tion time by decreasing the number of Gaussians or by im-
proving the implementation of the differentiable rasterizer.
However, they still rely on the ADAM optimizer to fit Gaus-
sian parameters of a scene in thousands of iterations, which
can take up to an hour. To this end, we change the optimizer
to LM that runs in conjunction with the 3DGS differentiable
rasterizer. For efficient GPU parallelization, we propose a
caching data structure for intermediate gradients that al-
lows us to efficiently calculate Jacobian-vector products in
custom CUDA kernels. In every LM iteration, we calculate
update directions from multiple image subsets using these
kernels and combine them in a weighted mean. Overall,
our method is 30% faster than the original 3DGS while ob-
taining the same reconstruction quality. Our optimization is
also agnostic to other methods that accelerate 3DGS, thus
enabling even faster speedups compared to vanilla 3DGS.

1. Introduction

Novel View Synthesis (NVS) is the task of rendering a
scene from new viewpoints, given a set of images as in-
put. NVS can be employed in Virtual Reality applications to
achieve photo-realistic immersion and to freely explore cap-
tured scenes. To facilitate this, different 3D scene represen-
tations have been developed [2, 3, 20, 28, 30, 36]. Among
those, 3DGS [20] (3D Gaussian-Splatting) is a point-based
representation that parameterizes the scene as a set of 3D
Gaussians. It offers real-time rendering and high-quality
image synthesis, while being optimized from a set of posed
images through a differentiable rasterizer.

3DGS is optimized from a set of posed input images
that densely capture the scene. The optimization can take
up to an hour to converge on high-resolution real-world
scene datasets with a lot of images [42]. It is desirable to
reduce the optimization runtime which enables faster us-
age of the reconstruction for downstream applications. Ex-
isting methods reduce this runtime by improving the op-
timization along different axes. First, 3DGS renders im-
ages with a tile-based, differentiable rasterizer that is imple-
mented in CUDA. In every iteration, the Gaussians get up-
dated with gradient descent by backpropagating a rendering
loss through the rasterizer. By improving the speed of the

1

https://lukashoel.github.io/3DGS-LM/

forward- and backward-pass, recent methods accelerate the
optimization [11, 14, 27, 41]. Second, in 3DGS the number
of Gaussians is gradually grown during optimization, which
is known as densification. To facilitate this, 3DGS accumu-
lates positional gradients over multiple iterations and uses
these statistics to split and prune Gaussians. Recently, GS-
MCMC [22], Taming-3DGS [27], Mini-Splatting [13], and
Revising-3DGS [5] propose novel densification schemes
that reduce the number of required Gaussians to represent
the scene. This makes the optimization more stable and also
faster, since fewer Gaussians must be optimized.

Despite these improvements, the optimization still takes
significant resources, requiring thousands of gradient de-
scent iterations to converge. To this end, we aim to re-
duce the runtime by improving the underlying optimiza-
tion during 3DGS reconstruction. More specifically, we
propose to replace the widely used ADAM [23] optimizer
with a tailored Levenberg-Marquardt (LM) [29]. This al-
lows us to accelerate 3DGS reconstruction (Fig. 1 left) by
over 30% on average. Concretely, we propose a highly-
efficient GPU parallelization scheme for the preconditioned
conjugate gradient (PCG) algorithm within the inner LM
loop in order to obtain the respective update directions. To
this end, we extend the differentiable 3DGS rasterizer with
custom CUDA kernels that compute Jacobian-vector prod-
ucts. Our proposed caching data structure for intermediate
gradients (Fig. 3) then allows us to perform these calcula-
tions fast and efficiently in a data-parallel fashion. In order
to scale caching to high-resolution image datasets, we cal-
culate update directions from multiple image subsets and
combine them in a weighted mean. Overall, this allows us
to improve reconstruction time by 30% compared to state-
of-the-art 3DGS baselines while achieving the same recon-
struction quality (Fig. 1 right).

To summarize, our contributions are:
• we propose a tailored 3DGS optimization based on

Levenberg-Marquardt that improves reconstruction time
by 30% and which is agnostic to other 3DGS accelera-
tion methods.

• we propose a highly-efficient GPU parallelization scheme
for the PCG algorithm for 3DGS in custom CUDA ker-
nels with a caching data structure to facilitate efficient
Jacobian-vector products.

2. Related Work
2.1. Novel-View-Synthesis

Novel-View-Synthesis is widely explored in recent years [2,
3, 18, 20, 28, 30, 36]. Neural Radiance Fields (NeRF) [28]
are particularly successful, because they achieve highly
photo-realistic image synthesis results by optimizing MLP
weights through volume rendering. To improve training
time from days to minutes, NeRF was combined with

explicit representations like voxel grids [15, 35], hash
grids [30], or points [40].

3D Gaussian Splatting (3DGS) [20] extends this idea by
representing the scene as a set of 3D Gaussians, that are ras-
terized into 2D splats and then α-blended into pixel colors.
The approach gained popularity, due to the real-time render-
ing capabilities of high quality images. Since its inception,
3DGS was improved along several axes (next to improving
optimization runtime). Recent methods improve the qual-
ity of rendered images [17, 26, 43] and the efficiency dur-
ing rendering [31, 34]. Others obtain better surface recon-
structions [16, 19], reduce the memory requirements of the
Gaussians [32], and enable training and rendering of large-
scale scenes [21, 46]. We similarly adopt 3DGS as our
scene representation, but focus on improving the per-scene
optimization time.

2.2. Speed-Up Gaussian Splatting Optimization

Obtaining a 3DGS scene reconstruction can be acceler-
ated in several ways. One line of work reduces the num-
ber of Gaussians by changing the densification heuris-
tics [5, 13, 22, 26, 27]. Recent methods focusing on sparse-
view reconstruction train a neural network as data-driven
prior, that directly outputs Gaussians in a single forward
pass [6–8, 12, 25]. In contrast, we focus on the dense-view
and per-scene optimization setting, i.e., we do not require a
data prior. Other works improve the optimization runtime
by improving the implementation of the underlying differ-
entiable rasterizer [11, 14, 27, 41]. We demonstrate that our
method is compatible with these approaches, i.e., our op-
timizer can be plugged into these methods to even further
accelerate the optimization.

2.3. Gauss-Newton Optimization For 3D Recon-
struction Tasks

NeRF and 3DGS are typically optimized with stochas-
tic gradient descent (SGD) optimizers like ADAM [23]
for thousands of iterations. In contrast, many works in
RGB-D fusion employ the Gauss-Newton (or Levenberg-
Marquardt) algorithms to optimize objectives for 3D recon-
struction tasks [9, 10, 37, 38, 47, 48]. By doing so, these
methods can quickly converge in an order of magnitude
fewer iterations than SGD. Motivated by this, we aim to
accelerate 3DGS optimization by adopting the Levenberg-
Marquardt algorithm as our optimizer. Rasmuson et al. [33]
implemented the Gauss-Newton algorithm for reconstruct-
ing a NeRF based on voxel grids. Their technical approach
is related to ours, but we implement it for the 3DGS repre-
sentation in a different way. Concretely, we subsample im-
ages in every iteration and introduce a caching data struc-
ture. This allows us to achieve state-of-the-art rendering
quality, while significantly accelerating the optimization in
comparison to existing methods.

2

SfM points &

posed images

in
it

ia
li

za
ti

o
n

:

3
D

G
S

 +
 A

D
A

M

fi
n

et
u

n
in

g
:

3
D

G
S

 +
 O

u
rs

Initial 3D

Gaussians

(densified)

Final 3D

Gaussians

(converged)

solve normal equations

on image batches

weighted mean

apply update

line search

repeat for 5-10 iters

Figure 2. Method Overview. We accelerate 3DGS optimization
by framing it in two stages. First, we use the original ADAM
optimizer and densification scheme to arrive at an initialization
for all Gaussians. Second, we employ the Levenberg-Marquardt
algorithm to finish optimization.

3. Method
Our pipeline is visualized in Fig. 2. First, we obtain
an initialization of the Gaussians from a set of posed im-
ages and their SfM point cloud as input by running the
standard 3DGS optimization (Sec. 3.1). In this stage the
Gaussians are densified, but remain unconverged. After-
wards, we finish the optimization with our novel optimizer.
Concretely, we optimize the sum of squares objective with
the Levenberg-Marquardt (LM) [29] algorithm (Sec. 3.2),
which we implement in efficient CUDA kernels (Sec. 3.3).
This two-stage approach accelerates the optimization com-
pared to only using first-order optimizers.

3.1. Review of Gaussian-Splatting

3D Gaussian Splatting (3DGS) [20] models a scene as a set
of 3D Gaussians, each of which is parameterized by a po-
sition, rotation, scaling, and opacity. The view-dependent
color is modeled by Spherical Harmonics coefficients of or-
der 3. To render an image of the scene from a specific view-
point, all visible Gaussians are first projected into 2D splats
with a tile-based differentiable rasterizer. Afterwards, the
splats are α-blended per-pixel to obtain a final pixel color.
To fit the Gaussians to image observations, a rendering loss
L is optimized with the ADAM [23] optimizer w.r.t. all
Gaussian parameters x:

L(x)= 1

N

N∑
i=1

(λ1L1(ĉi, ci)+λ2(1−LSSIM (ĉi, ci))) (1)

where λ1=0.2, λ2=0.8, ĉi is the rendered color, and ci the
ground-truth color for one color channel of one pixel. Typi-

cally, ADAM uses a batch size of 1, meaning a random im-
age per iteration is sampled to perform an update step. The
number of Gaussians are initialized from the SfM points and
is gradually grown during the first half of the optimization,
which is known as densification [20].

3.2. Levenberg-Marquardt Optimization for 3DGS

We employ the LM algorithm for optimization of the Gaus-
sians by reformulating the rendering loss as a sum of
squares energy function:

E(x)=

N∑
i=1

(
√
λ1L1(ĉi, ci)

2
+
√

λ2(1−LSSIM (ĉi, ci))
2
)

(2)

where we have in total N=6HWP residuals for P images
with HxW pixels each and 3 color channels. We take the
square root of the L1 and LSSIM losses, to convert Eq. (1)
into the required form for the LM algorithm. In other words,
we use the identical objective, but a different optimizer. In
contrast to ADAM, the LM algorithm requires a large batch
size (ideally all images) for every update step to achieve
stable convergence [29]. In practice, we select large enough
subsets of all images to ensure reliable update steps (see
Sec. 3.3.2 for more details).

3DGS uses the structural similarity index measure
(SSIM) as loss function during optimization. In SSIM,
the local neighborhood of every pixel gets convolved with
Gaussian kernels to obtain the final per-pixel score [39].
As a consequence, gradients from the loss flow from ev-
ery pixel to all Gaussians in the local neighborhood of that
pixel. In contrast, the L1 loss only provides gradients from
every pixel to the Gaussians along the corresponding ray.
For simplicity, we approximate the gradient flow in LSSIM

by backpropagating the per-pixel scores only to the center
pixels (ignoring the contribution to other pixels in the local
neighborhood). We implement it following the derivation
of Zhao et al. [45]. This approximation allows us to keep
rays independent from each other when calculating the Ja-
cobian, which is a desirable property for our CUDA kernel
implementation (see Sec. 3.3 for more details).

Obtaining Update Directions In every iteration of our
optimization we obtain the update direction ∆ ∈ RM for all
M Gaussian parameters by solving the normal equations:

(JTJ+ λregdiag(JTJ))∆ = JTF(x) (3)

where F(x) ∈ RN is the residual vector corresponding to
Eq. (2) and J ∈ RNxM the corresponding Jacobian matrix.

In a typical dense capture setup, we optimize over mil-
lions of Gaussians and have hundreds of high-resolution im-
ages. Even though J is a sparse matrix (each row only con-
tains non-zero values for the Gaussians that contribute to

3

the color of that pixel), it is therefore not possible to materi-
alize J in memory. Instead, we employ the preconditioned
conjugate gradient (PCG) algorithm, to solve Eq. (3) in a
matrix-free fashion. We implement PCG in custom CUDA
kernels, see Sec. 3.3 for more details.

Apply Parameter Update After we obtained the solution
∆, we run a line search to find the best scaling factor γ for
updating the Gaussian parameters:

min
γ

E(xk − γ∆) (4)

In practice, we run the line search on a 30% subset of all
images, which is enough to get a reasonable estimate for γ,
but requires fewer rendering passes. Afterwards, we update
the Gaussian parameters as: xk+1=xk−γ∆. Similar to the
implementation of LM in CERES [1], we adjust the reg-
ularization strength λreg after every iteration based on the
quality of the update step. Concretely, we calculate

ρ =
||F (x+∆)||2 − ||F (x)||2

||J∆+ F (x)||2 − ||F (x)||2
(5)

and only keep the update if ρ > 1e−5, in which case we
reduce the regularization strength λreg by half. Otherwise
we revert the update and double λreg.

3.3. Memory Efficient PCG Implementation

The PCG algorithm obtains the solution to the least squares
problem of Eq. (3) in multiple iterations. In practice, we run
the algorithm for niters=8 iterations and implement it with
custom CUDA kernels. We summarize it in Algorithm 1.

Most of the work in every PCG iteration is consumed
by calculating the matrix-vector product gi=JTJpi. We
implement this product in two stages by first calculating
ui=Jpi and then gi=JTui. Calculating the non-zero
values of J requires backpropagating from every residual
through the α-blending and splat projection steps back to
all Gaussian parameters. The original tile-based rasterizer
of 3DGS [20] implements the calculation of JTx with a
per-pixel parallelization. That is, every thread handles one
ray, stepping backwards along all splats that this ray hit.
We found that this parallelization is too slow for an effi-
cient PCG implementation. The reason is that we have to
repeat this calculation multiple times: per PCG iteration we
do it once for ui and once for gi. As a consequence, we
re-calculate the same intermediate α-blending states, since
the loop over splats is evaluated multiple times.

Our key idea is to change the parallelization from per-
pixel to per-pixel-per-splat. We summarize this pattern in
Fig. 3. We describe the backward pass from a residual r to
a Gaussian parameter xi as:

∂r

∂xi
=

∂r

∂p

∂p

∂s

∂s

∂xi
(6)

Algorithm 1: We run the PCG algorithm with cus-
tom CUDA kernels (blue) in every LM iteration.

Input : Gaussians and cameras G, Residuals F
Output: Update Direction ∆

1 b, C = buildCache(G,F) // b=− JTF
2 C = sortCacheByGaussians(C)
3 M−1 = 1/diagJTJ(G, C)
4 x0 = M−1b
5 u0 = applyJ(sortX(x0),G, C) // u0=Jx0

6 g0 = applyJT(u0,G, C) // g0=JTu0

7 r0 = b− g0

8 z0 = M−1r0
9 p0 = z0

10 for i = 0 to niters do
11 ui = applyJ(sortX(pi),G, C) // ui=Jpi

12 gi = applyJT(ui,G, C) // gi=JTui

13 αi =
rTi zi

pT
i gi

14 xi+1=xi+αipi

15 ri+1=ri−αigi
16 zi+1=M−1ri+1

17 βi =
rTi+1zi+1

rTi zi

18 pi+1 = zi+1 + βipi

19 end for
20 return xi+1

where ∂r
∂p is the gradient from the residual to the pixel, ∂p

∂s

from the pixel to the projected splat, and ∂s
∂xi

from the splat
to the Gaussian parameter. Calculating ∂p

∂s , requires ac-
cess to the accumulated transmittance and color in the α-
blending process for that pixel until splat s. Instead of loop-
ing over all splats along a ray and recalculating ∂p

∂s every
time, we cache this gradient once (Fig. 3 left). Every time
we need to calculate ui or gi in the PCG algorithm, we
then read the corresponding gradients from the cache (Fig. 3
right). This allows us to directly parallelize over all splats
in all pixels, which drastically accelerates the runtime since
we no longer have to loop over rays.

Storing these gradients in a cache consumes additional
GPU memory and is largely controlled by how many im-
ages (rays) we process in each PCG iteration and how many
splats contribute to the final color along each ray. We pro-
pose an efficient subsampling scheme in Sec. 3.3.2 to limit
the memory to the available budget.

3.3.1 CUDA Kernel Design

We describe the parallelization pattern and output of every
CUDA kernel that we use to implement Algorithm 1. We
refer to the supplemental material for more details.
buildCache We use the per-pixel parallelization to cal-

4

Build Cache: per-pixel parallelization

so
rt

 c
ac

h
e

b
y
 G

au
ss

ia
n
s

P
ix

el
s

G
au

ss
ia

n
s

sum per pixel

gradient cache,

vector values

per Gaussian /

pixel

read / write

operation

per thread:

backprop to

Gaussian

attributes
ray

sum per

Gaussian

PCG: per-pixel-per-splat parallelization

pixel to splat

gradient

Gaussians

Figure 3. Parallelization Strategy And Caching Scheme. We implement the PCG algorithm with efficient CUDA kernels, that use a
gradient cache to calculate Jacobian-vector products. Before PCG starts, we create the gradient cache following the per-pixel parallelization
of 3DGS [20]. Afterwards, we sort the cache by Gaussians to ensure coalesced read accesses. The cache decouples splats along rays, which
allows us to parallelize per-pixel-per-splat during PCG.

culate all gradients ∂p
∂s . For coalesced write accesses, we

store the cache values sorted by pixels (Fig. 3 left). Ad-
ditionally, we calculate b = −JTF following the imple-
mentation of the differentiable rasterizer in 3DGS [20], by
splitting this calculation into three smaller kernels, where
we write out the cache completely in the first kernel.
sortCacheByGaussians All remaining kernels re-
quire the cache to be sorted over Gaussians to ensure co-
alesced read accesses. We sort the cache by Gaussians and
calculate a prefix sum over the number of entries per Gaus-
sian. Subsequent kernels use this to index into the cache.
diagJTJ We use the Jacobi preconditioner
M−1=1/diag(JTJ) when running PCG (Algorithm 1).
This kernel computes the required entries by utilizing
the per-pixel-per-splat parallelization and the cache.
Every thread directly squares its calculated gradients and
atomically adds them to the output vector.
applyJ We compute ui=Jpi by utilizing the per-pixel-
per-splat parallelization and the cache. Additionally, we
resort the input vector pi for a coalesced memory access us-
ing the sortX kernel. Every thread sums up the calculated
gradients and atomically adds them to the output vector.
applyJT We compute gi=JTui by utilizing the per-
pixel-per-splat parallelization and the cache. Similar to
buildCache, we split the computation in three kernels.

3.3.2 Image Subsampling Scheme

Our caching data structure consumes additional GPU mem-
ory. For high resolution images in a dense reconstruction
setup, the number of rays and thus the cache size can grow
too large. To this end, we split the images into batches
and solve the normal equations independently, following
Eq. (3). This allows us to store the cache only for one batch

at a time. Concretely, for n batches, we obtain n update
vectors and combine them in a weighted mean:

∆ =

n∑
i=1

Mi∆i∑n
k=1 Mk

(7)

where we use the inverse of the PCG preconditioner
Mi=diag(JT

i Ji) as the weights. We refer to the supple-
ment for a derivation of the weights. These weights balance
the importance of update vectors across batches based on
how much each Gaussian parameter contributed to the final
colors in the respective images. This subsampling scheme
allows us to control the cache size relative to the number of
images in a batch. In practice, we can choose batch sizes be-
tween 25 and 70 images and use up to n=4 batches per LM
iteration. We either select the images at random or, if the
scene was captured along a smooth trajectory, in a strided
fashion to maximize the scene coverage in every batch.

3.4. 3DGS Optimization in Two Stages

We utilize our LM implementation in the second stage of
3DGS optimization (see Fig. 2). Before that, we use the
ADAM optimizer to obtain an initialization of the Gaussian
parameters. It is also possible to use the LM optimizer from
the beginning, however this does not bring any additional
speed-up (see Fig. 4). In the beginning of optimization,
gradient descent makes rapid progress by optimizing the
Gaussians from a single image per iteration. In contrast, we
sample many images in every LM iteration, which makes
every iteration more time-consuming. This additional com-
pute overhead is especially helpful to converge to optimal
Gaussian parameters quicker (see Fig. 1 left).

Splitting the method in two stages also allows us to com-
plete the densification of the Gaussians before employing
the LM optimizer, which simplifies the implementation.

5

0 200 400 600 800 1000 1200
Time (s)

22.50

22.75

23.00

23.25

23.50

23.75

24.00

24.25

PS
N

R
 (d

b)

DISTWAR
DISTWAR + Ours (8000 init. iters)
DISTWAR + Ours (6000 init. iters)
DISTWAR + Ours (4000 init. iters)
DISTWAR + Ours (2000 init. iters)
DISTWAR + Ours (0 init. iters)

Figure 4. Comparison of initialization iterations. In our first
stage, we initialize the Gaussians with gradient descent for K it-
erations, before finetuning with our LM optimizer. After 6000
or 8000 iterations, our method converges faster than the baseline.
With less iterations, pure LM is slower, which highlights the im-
portance of our two stage approach. Results reported on the “gar-
den” scene from MipNeRF360 [28] without densification.

4. Results

Baselines We compare our LM optimizer against ADAM in
multiple reference implementations of 3DGS. This shows,
that our method is compatible with other runtime improve-
ments. In other words, we can swap out the optimizer and
retain everything else. Concretely, we compare against the
original 3DGS implementation [20], its reimplementation
“gsplat” [41], and DISTWAR [11]. Additionally, we com-
pare against Taming-3DGS [27] by utilizing their released
source code, that contains the rasterizer improvements and
uses the 3DGS [20] densification heuristics (referred to as
“Taming-3DGS†” in the following). We run all baselines
for 30K iterations with their default hyperparameters.
Datasets and Metrics We benchmark our runtime improve-
ments on three established datasets: Tanks&Temples [24],
Deep Blending [18], and MipNeRF360 [4]. These datasets
contain in total 13 scenes that cover bounded indoor and un-
bounded outdoor environments. We fit all scenes for every
method on the same NVIDIA A100 GPU using the train/test
split as proposed in the original 3DGS [20] publication. To
measure the quality of the reconstruction, we report peak
signal-to-noise ratio (PSNR), structural similarity (SSIM),
and perceptual similarity (LPIPS) [44] averaged over all test
images. Additionally, we report the optimization runtime
and the maximum amount of consumed GPU memory.
Implementation Details For our main results, we run the
first stage for 20K iterations with the default hyperparam-
eters of the respective baseline. The densification is com-
pleted after 15K iterations. Afterwards, we only have to run
5 LM iterations with 8 PCG iterations each to converge on
all scenes. This showcases the efficiency of our optimizer.

Since the image resolutions are different for every dataset,
we select the batch-size and number of batches such that
the consumed memory for caching is similar. We select 25
images in 4 batches for MipNeRF360 [4], 25 images in 3
batches for Deep Blending [18], and 70 images in 3 batches
for Tanks&Temples [24]. We constrain the value range of
λreg for stable updates. We define it in [1e−4, 1e4] for Deep
Blending [18] and Tanks&Temples [24] and in the interval
[1e−4, 1e−2] for MipNeRF360 [4].

4.1. Comparison to Baselines

We report our main quantitative results in Tab. 1. Our LM
optimizer can be added to all baseline implementations and
accelerates the optimization runtime by 30% on average.
The reconstructions show similar quality across all metrics
and datasets, highlighting that our method arrives at sim-
ilar local minima, just faster. We also provide a per-scene
breakdown of these results in the supplemental material. On
average our method consumes 53 GB of GPU memory on
all datasets. In contrast, the baselines do not use an extra
cache and only require between 6-11 GB of memory. This
showcases the runtime-memory tradeoff of our approach.

We visualize sample images from the test set in Fig. 5 for
both indoor and outdoor scenarios. After the same amount
of optimization runtime, our method is already converged
whereas the baselines still need to run longer. As a result,
the baselines still contain suboptimal Gaussians, which re-
sults in visible artifacts in rendered images. In comparison,
our rendered images more closely resemble the ground truth
with more accurate brightness / contrast and texture details.

4.2. Ablations

Is the L1/SSIM objective important?
We utilize the same loss functions in our LM optimizer

as in the original 3DGS implementation, namely the L1 and
LSSIM losses (see Eq. (1)). Since LM energy terms are de-
fined as a sum of squares, we adopt the square root formu-
lation of these loss functions to arrive at an identical objec-
tive (see Eq. (2)). We compare this choice against fitting the
Gaussians with only an L2 loss, that does not require taking
a square root. Concretely, we compare the achieved qual-
ity and runtime of LM against ADAM for both the L2 loss
and the L1 and LSSIM losses. As can be seen in Tab. 2, we
achieve faster convergence and similar quality in both cases.
However, the achieved quality is inferior for both LM and
ADAM when only using the L2 loss. This highlights the
importance of the L1 and LSSIM loss functions and why
we adopt them in our method as well.
How many images per batch are necessary? The key
hyperparameters in our model are the number of images in
a batch and how many batches to choose for every LM it-
eration (Sec. 3.3.2). This directly controls how much GPU
memory our optimizer consumes and how much time we

6

Method MipNeRF-360 [4] Tanks&Temples [24] Deep Blending [18]

SSIM↑ PSNR↑ LPIPS↓ Time (s) SSIM↑ PSNR↑ LPIPS↓ Time (s) SSIM↑ PSNR↑ LPIPS↓ Time (s)

3DGS [20] 0.813 27.40 0.218 1271 0.844 23.68 0.178 736 0.900 29.51 0.247 1222
+ Ours 0.813 27.39 0.221 972 0.845 23.73 0.182 663 0.903 29.72 0.247 951

DISTWAR [11] 0.813 27.42 0.217 966 0.844 23.67 0.178 601 0.899 29.47 0.247 841
+ Ours 0.814 27.42 0.221 764 0.844 23.67 0.183 537 0.902 29.60 0.248 672

gsplat [41] 0.814 27.42 0.217 1064 0.846 23.50 0.179 646 0.904 29.52 0.247 919
+ Ours 0.814 27.42 0.221 818 0.844 23.68 0.183 414 0.902 29.58 0.249 716

Taming-3DGS† [27] 0.810 27.44 0.224 684 0.847 23.79 0.176 463 0.902 29.71 0.242 590
+ Ours 0.814 27.41 0.221 589 0.844 23.72 0.183 393 0.902 29.72 0.249 540

Table 1. Quantitative comparison of our method and baselines. By adding our method to baselines, we accelerate the optimization time
by 30% on average while achieving the same quality. We can combine our method with others, that improve runtime along different axes.
This demonstrates that our method offers an orthogonal improvement, i.e., the LM optimizer can be plugged into many existing methods.

3DGS [20] after 814s 3DGS + Ours after 794s Ground-Truth Images

Taming-3DGS† [27] after 456s Taming-3DGS† + Ours after 454s Ground-Truth Images

gsplat [41] after 453s gsplat + Ours after 447s Ground-Truth Images

DISTWAR [11] after 978s DISTWAR + Ours after 971s Ground-Truth Images

Figure 5. Qualitative comparison of our method and baselines. We compare rendered test images after similar optimization time. All
baselines converge faster when using our LM optimizer, which shows in images with fewer artifacts and more accurate brightness / contrast.

need per iteration. We compare different number of im-
ages in Tab. 3 (top) on the NeRF-Synthetic [28] dataset. We
choose this dataset because it is possible to construct the
cache for all 100 training images in 33 GB of GPU memory
and optimize the scene with one batch of all images. We
compare this against our proposed subsampling scheme for
different number of images in a single batch. Decreasing the
number of images in a batch results in only slightly worse
quality, but also yields faster convergence and reduces GPU
memory consumption linearly down to 15GB for 40 images.
This demonstrates that subsampling images does not nega-

tively impact the convergence of the LM optimizer in our
task. This motivates our usage of subsampling on the real-
world datasets in our main results.

Are we better than full-batch ADAM? One reason why
LM requires drastically fewer iterations to converge than
ADAM is the larger batch size (number of training images
per iteration). Concretely, we require only 5 additional LM
iterations after the initialization, whereas ADAM runs for
another 10K iterations to converge. We can similarly in-
crease the batch size in ADAM to reduce the number of
iterations. However, as can be seen in Tab. 3 (bottom),

7

Method SSIM↑ PSNR↑ LPIPS↓ Time (s)

3DGS [20] (L1, SSIM) 0.862 27.23 0.108 1573
3DGS + Ours (L1, SSIM) 0.863 27.29 0.110 1175

3DGS [20] (L2) 0.854 27.31 0.117 1528
3DGS + Ours (L2) 0.857 27.48 0.114 1131

Table 2. Ablation of objective. We compare using the L1/SSIM
losses against the L2 loss. For both, 3DGS [20] optimized with
ADAM and combined with ours, we achieve better results with
the L1/SSIM objective. In both cases, our method accelerates the
convergence. We report results on the garden scene from the Mip-
NeRF360 [4] dataset starting from the same initialization.

Method #I #B SSIM↑ PSNR↑ LPIPS↓ Time (s)

3DGS + Ours 5 100 0.969 33.77 0.030 242
3DGS + Ours 5 80 0.969 33.73 0.031 233
3DGS + Ours 5 60 0.968 33.69 0.031 223
3DGS + Ours 5 40 0.967 33.51 0.032 212

3DGS [20] 5 100 0.967 33.48 0.033 164
3DGS [20] 50 100 0.968 33.57 0.032 218
3DGS [20] 100 100 0.969 33.65 0.031 270

Table 3. Ablation of batch-size. We vary the number of itera-
tions (#I) and number of images in a batch (#B). Reducing #B for
our method reduces runtime and consumed memory, while only
slightly impacting quality. This demonstrates that image subsam-
pling Sec. 3.3.2 is compatible with LM in our task. Increasing
#I in 3DGS [20] with ADAM is slower and achieves worse qual-
ity than Ours using LM. We report average results on the NeRF-
Synthetic [28] dataset starting from the same initialization.

the achieved quality is worse for the same batch size and
number of iterations. When running for more iterations,
ADAM eventually converges to similar quality, but needs
more time. This highlights the efficiency of our optimizer:
since we solve the normal equations in Eq. (2), one LM iter-
ation makes a higher quality update step than ADAM which
only uses the gradient direction.

4.3. Runtime Analysis

We analyze the runtime of our LM optimizer across multi-
ple iterations in Fig. 6. The runtime is dominated by solving
Eq. (3) with PCG and building the cache (Sec. 3.3). Sorting
the cache, rendering all selected images, and the line search
(Eq. (4)) are comparably faster. When running PCG, we
execute the applyJ and applyJT kernels up to 8 times
using the per-pixel-per-splat parallelization pattern (Algo-
rithm 1). In contrast, we execute the buildCache ker-
nel once and parallelize per-pixel, which is only marginally
faster. This demonstrates the speed advantage obtained by
using our proposed caching structure. We also provide a

2 4 6 8 10
LM Iteration

0

5

10

15

20

25

Ti
m

e
(s

)

PCG
build cache
sort cache
line search
render images

Figure 6. Runtime Analysis. One iteration of our LM optimizer
is dominated by solving PCG and building the cache. Measured
on the “garden” scene from Mip-NeRF360 [4] after densification.

detailed profiling analysis of the kernels in the supplement.

4.4. Limitations

By replacing ADAM with our LM scheme, we accelerate
the convergence speed by 30% on average for all datasets
and baselines. However, some drawbacks remain.

First, our approach has a higher GPU memory footprint
than baselines, due to our gradient cache (Sec. 3.3). De-
pending on the number of images and their resolution, this
can make it hard to run our method on smaller GPUs. Fol-
lowing Mallick et al. [27], one could reduce the cache size
by storing the gradients ∂p

∂s only for every 32nd splat along
a ray and re-doing the α-blending in these local windows.

Second, our two-stage approach relies on ADAM to first
complete the densification. The original 3DGS [20] densi-
fies Gaussians up to 140 times, which is not easily trans-
ferable to the granularity of only 5 LM iterations. Instead,
one could explore recent improvements in densification and
integrate them into our method [5, 22].

5. Conclusion
We have presented 3DGS-LM, a method that accelerates the
reconstruction of 3D Gaussian-Splatting [20] by replacing
the ADAM optimizer with a tailored Levenberg-Marquardt
(LM) (Sec. 3.2). We show that with our data parallelization
scheme we can efficiently solve the normal equations with
PCG in custom CUDA kernels (Sec. 3.3). Employed in a
two-stage approach (Sec. 3.4), this leads to a 30% runtime
acceleration compared to baselines. We further demonstrate
that our approach is agnostic to other methods [11, 27, 41],
which further improves the optimization runtime. Overall,
we believe that the ability of faster 3DGS reconstructions
with our method will open up further research avenues and
make existing 3DGS more practical across a wide range of
real-world applications.

8

6. Acknowledgements
This project was funded by a Meta sponsored research
agreement. In addition, the project was supported by
the ERC Starting Grant Scan2CAD (804724) as well
as the German Research Foundation (DFG) Research
Unit “Learning and Simulation in Visual Computing”.
We thank Justin Johnson for the helpful discussions
in an earlier project with a similar direction and Peter
Kocsis for the helpul discussions about image subsam-
pling. We also thank Angela Dai for the video voice-over.

References
[1] Sameer Agarwal, Keir Mierle, and The Ceres Solver Team.

Ceres Solver, 2023. 4
[2] Kara-Ali Aliev, Artem Sevastopolsky, Maria Kolos, Dmitry

Ulyanov, and Victor Lempitsky. Neural point-based graph-
ics. In Computer Vision–ECCV 2020: 16th European Con-
ference, Glasgow, UK, August 23–28, 2020, Proceedings,
Part XXII 16, pages 696–712. Springer, 2020. 1, 2

[3] Jonathan T Barron, Ben Mildenhall, Matthew Tancik, Peter
Hedman, Ricardo Martin-Brualla, and Pratul P Srinivasan.
Mip-nerf: A multiscale representation for anti-aliasing neu-
ral radiance fields. In Proceedings of the IEEE/CVF inter-
national conference on computer vision, pages 5855–5864,
2021. 1, 2

[4] Jonathan T Barron, Ben Mildenhall, Dor Verbin, Pratul P
Srinivasan, and Peter Hedman. Mip-nerf 360: Unbounded
anti-aliased neural radiance fields. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 5470–5479, 2022. 6, 7, 8, 13, 14, 15, 16,
17, 18

[5] Samuel Rota Bulò, Lorenzo Porzi, and Peter Kontschieder.
Revising densification in gaussian splatting. arXiv preprint
arXiv:2404.06109, 2024. 2, 8

[6] David Charatan, Sizhe Lester Li, Andrea Tagliasacchi, and
Vincent Sitzmann. pixelsplat: 3d gaussian splats from image
pairs for scalable generalizable 3d reconstruction. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 19457–19467, 2024. 2

[7] Anpei Chen, Haofei Xu, Stefano Esposito, Siyu Tang, and
Andreas Geiger. Lara: Efficient large-baseline radiance
fields. In European Conference on Computer Vision (ECCV),
2024.

[8] Yuedong Chen, Haofei Xu, Chuanxia Zheng, Bohan Zhuang,
Marc Pollefeys, Andreas Geiger, Tat-Jen Cham, and Jianfei
Cai. Mvsplat: Efficient 3d gaussian splatting from sparse
multi-view images. arXiv preprint arXiv:2403.14627, 2024.
2

[9] Angela Dai, Matthias Nießner, Michael Zollhöfer, Shahram
Izadi, and Christian Theobalt. Bundlefusion: Real-time
globally consistent 3d reconstruction using on-the-fly surface
reintegration. ACM Transactions on Graphics (ToG), 36(4):
1, 2017. 2

[10] Zachary DeVito, Michael Mara, Michael Zollhöfer, Gilbert
Bernstein, Jonathan Ragan-Kelley, Christian Theobalt, Pat

Hanrahan, Matthew Fisher, and Matthias Niessner. Opt: A
domain specific language for non-linear least squares opti-
mization in graphics and imaging. ACM Transactions on
Graphics (TOG), 36(5):1–27, 2017. 2

[11] Sankeerth Durvasula, Adrian Zhao, Fan Chen, Ruofan
Liang, Pawan Kumar Sanjaya, and Nandita Vijaykumar.
Distwar: Fast differentiable rendering on raster-based ren-
dering pipelines. arXiv preprint arXiv:2401.05345, 2023. 2,
6, 7, 8, 13, 16

[12] Zhiwen Fan, Wenyan Cong, Kairun Wen, Kevin Wang,
Jian Zhang, Xinghao Ding, Danfei Xu, Boris Ivanovic,
Marco Pavone, Georgios Pavlakos, et al. Instantsplat: Un-
bounded sparse-view pose-free gaussian splatting in 40 sec-
onds. arXiv preprint arXiv:2403.20309, 2024. 2

[13] Guangchi Fang and Bing Wang. Mini-splatting: Represent-
ing scenes with a constrained number of gaussians. arXiv
preprint arXiv:2403.14166, 2024. 2

[14] Guofeng Feng, Siyan Chen, Rong Fu, Zimu Liao, Yi
Wang, Tao Liu, Zhilin Pei, Hengjie Li, Xingcheng Zhang,
and Bo Dai. Flashgs: Efficient 3d gaussian splatting for
large-scale and high-resolution rendering. arXiv preprint
arXiv:2408.07967, 2024. 2

[15] Sara Fridovich-Keil, Alex Yu, Matthew Tancik, Qinhong
Chen, Benjamin Recht, and Angjoo Kanazawa. Plenoxels:
Radiance fields without neural networks. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 5501–5510, 2022. 2

[16] Antoine Guédon and Vincent Lepetit. Sugar: Surface-
aligned gaussian splatting for efficient 3d mesh reconstruc-
tion and high-quality mesh rendering. CVPR, 2024. 2

[17] Abdullah Hamdi, Luke Melas-Kyriazi, Jinjie Mai, Guocheng
Qian, Ruoshi Liu, Carl Vondrick, Bernard Ghanem, and
Andrea Vedaldi. Ges: Generalized exponential splatting
for efficient radiance field rendering. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 19812–19822, 2024. 2

[18] Peter Hedman, Julien Philip, True Price, Jan-Michael Frahm,
George Drettakis, and Gabriel Brostow. Deep blending for
free-viewpoint image-based rendering. ACM Transactions
on Graphics (ToG), 37(6):1–15, 2018. 2, 6, 7, 15, 16, 17, 18

[19] Binbin Huang, Zehao Yu, Anpei Chen, Andreas Geiger, and
Shenghua Gao. 2d gaussian splatting for geometrically accu-
rate radiance fields. In SIGGRAPH 2024 Conference Papers.
Association for Computing Machinery, 2024. 2

[20] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler,
and George Drettakis. 3d gaussian splatting for real-time
radiance field rendering. ACM Transactions on Graphics, 42
(4), 2023. 1, 2, 3, 4, 5, 6, 7, 8, 12, 13, 15

[21] Bernhard Kerbl, Andreas Meuleman, Georgios Kopanas,
Michael Wimmer, Alexandre Lanvin, and George Drettakis.
A hierarchical 3d gaussian representation for real-time ren-
dering of very large datasets. ACM Transactions on Graph-
ics, 43(4), 2024. 2

[22] Shakiba Kheradmand, Daniel Rebain, Gopal Sharma, Wei-
wei Sun, Jeff Tseng, Hossam Isack, Abhishek Kar, An-
drea Tagliasacchi, and Kwang Moo Yi. 3d gaussian
splatting as markov chain monte carlo. arXiv preprint
arXiv:2404.09591, 2024. 2, 8

9

[23] Diederik P Kingma. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980, 2014. 2, 3

[24] Arno Knapitsch, Jaesik Park, Qian-Yi Zhou, and Vladlen
Koltun. Tanks and temples: Benchmarking large-scale scene
reconstruction. ACM Transactions on Graphics (ToG), 36
(4):1–13, 2017. 6, 7, 15, 16, 17, 18

[25] Tianqi Liu, Guangcong Wang, Shoukang Hu, Liao Shen,
Xinyi Ye, Yuhang Zang, Zhiguo Cao, Wei Li, and Zi-
wei Liu. Mvsgaussian: Fast generalizable gaussian splat-
ting reconstruction from multi-view stereo. arXiv preprint
arXiv:2405.12218, 2024. 2

[26] Tao Lu, Mulin Yu, Linning Xu, Yuanbo Xiangli, Limin
Wang, Dahua Lin, and Bo Dai. Scaffold-gs: Structured 3d
gaussians for view-adaptive rendering. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 20654–20664, 2024. 2

[27] Saswat Subhajyoti Mallick, Rahul Goel, Bernhard Kerbl,
Francisco Vicente Carrasco, Markus Steinberger, and Fer-
nando De La Torre. Taming 3dgs: High-quality ra-
diance fields with limited resources. arXiv preprint
arXiv:2406.15643, 2024. 2, 6, 7, 8, 13, 18

[28] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. Communications of the ACM, 65(1):99–106, 2021. 1,
2, 6, 7, 8

[29] Jorge J Moré. The levenberg-marquardt algorithm: imple-
mentation and theory. In Numerical analysis: proceedings
of the biennial Conference held at Dundee, June 28–July 1,
1977, pages 105–116. Springer, 2006. 2, 3

[30] Thomas Müller, Alex Evans, Christoph Schied, and Alexan-
der Keller. Instant neural graphics primitives with a mul-
tiresolution hash encoding. ACM transactions on graphics
(TOG), 41(4):1–15, 2022. 1, 2

[31] Michael Niemeyer, Fabian Manhardt, Marie-Julie Rakoto-
saona, Michael Oechsle, Daniel Duckworth, Rama Gosula,
Keisuke Tateno, John Bates, Dominik Kaeser, and Federico
Tombari. Radsplat: Radiance field-informed gaussian splat-
ting for robust real-time rendering with 900+ fps. arXiv.org,
2024. 2

[32] Panagiotis Papantonakis, Georgios Kopanas, Bernhard
Kerbl, Alexandre Lanvin, and George Drettakis. Reducing
the memory footprint of 3d gaussian splatting. Proceedings
of the ACM on Computer Graphics and Interactive Tech-
niques, 7(1):1–17, 2024. 2

[33] Sverker Rasmuson, Erik Sintorn, and Ulf Assarsson. Perf:
performant, explicit radiance fields. Frontiers in Computer
Science, 4:871808, 2022. 2

[34] Kerui Ren, Lihan Jiang, Tao Lu, Mulin Yu, Linning Xu,
Zhangkai Ni, and Bo Dai. Octree-gs: Towards consistent
real-time rendering with lod-structured 3d gaussians. arXiv
preprint arXiv:2403.17898, 2024. 2

[35] Cheng Sun, Min Sun, and Hwann-Tzong Chen. Direct voxel
grid optimization: Super-fast convergence for radiance fields
reconstruction. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 5459–
5469, 2022. 2

[36] A. Tewari, J. Thies, B. Mildenhall, P. Srinivasan, E. Tretschk,
W. Yifan, C. Lassner, V. Sitzmann, R. Martin-Brualla, S.
Lombardi, T. Simon, C. Theobalt, M. Nießner, J. T. Barron,
G. Wetzstein, M. Zollhöfer, and V. Golyanik. Advances in
Neural Rendering. Computer Graphics Forum (EG STAR
2022), 2022. 1, 2

[37] Justus Thies, Michael Zollhöfer, Matthias Nießner, Levi Val-
gaerts, Marc Stamminger, and Christian Theobalt. Real-
time expression transfer for facial reenactment. ACM Trans.
Graph., 34(6):183–1, 2015. 2

[38] Justus Thies, Michael Zollhofer, Marc Stamminger, Chris-
tian Theobalt, and Matthias Niessner. Face2face: Real-time
face capture and reenactment of rgb videos. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016. 2

[39] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Si-
moncelli. Image quality assessment: from error visibility to
structural similarity. IEEE transactions on image processing,
13(4):600–612, 2004. 3

[40] Qiangeng Xu, Zexiang Xu, Julien Philip, Sai Bi, Zhixin
Shu, Kalyan Sunkavalli, and Ulrich Neumann. Point-
nerf: Point-based neural radiance fields. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 5438–5448, 2022. 2

[41] Vickie Ye, Ruilong Li, Justin Kerr, Matias Turkulainen,
Brent Yi, Zhuoyang Pan, Otto Seiskari, Jianbo Ye, Jeffrey
Hu, Matthew Tancik, and Angjoo Kanazawa. gsplat: An
open-source library for Gaussian splatting. arXiv preprint
arXiv:2409.06765, 2024. 2, 6, 7, 8, 13, 17

[42] Chandan Yeshwanth, Yueh-Cheng Liu, Matthias Nießner,
and Angela Dai. Scannet++: A high-fidelity dataset of 3d in-
door scenes. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 12–22, 2023. 1

[43] Zehao Yu, Anpei Chen, Binbin Huang, Torsten Sattler, and
Andreas Geiger. Mip-splatting: Alias-free 3d gaussian splat-
ting. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 19447–
19456, 2024. 2

[44] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman,
and Oliver Wang. The unreasonable effectiveness of deep
features as a perceptual metric. In CVPR, 2018. 6

[45] Hang Zhao, Orazio Gallo, Iuri Frosio, and Jan Kautz. Loss
functions for image restoration with neural networks. IEEE
Transactions on computational imaging, 3(1):47–57, 2016.
3

[46] Hexu Zhao, Haoyang Weng, Daohan Lu, Ang Li, Jinyang Li,
Aurojit Panda, and Saining Xie. On scaling up 3d gaussian
splatting training, 2024. 2

[47] Michael Zollhöfer, Matthias Nießner, Shahram Izadi,
Christoph Rehmann, Christopher Zach, Matthew Fisher,
Chenglei Wu, Andrew Fitzgibbon, Charles Loop, Christian
Theobalt, et al. Real-time non-rigid reconstruction using an
rgb-d camera. ACM Transactions on Graphics (ToG), 33(4):
1–12, 2014. 2

[48] Michael Zollhöfer, Angela Dai, Matthias Innmann, Chenglei
Wu, Marc Stamminger, Christian Theobalt, and Matthias
Nießner. Shading-based refinement on volumetric signed

10

distance functions. ACM Transactions on Graphics (ToG),
34(4):1–14, 2015. 2

11

3DGS-LM: Faster Gaussian-Splatting Optimization with Levenberg-Marquardt

Supplementary Material

A. More Details about CUDA Kernel Design
We introduce the necessary CUDA kernels to calculate the
PCG algorithm in Sec. 3.3.1. In this section, we provide
additional implementation details.

The necessary computations for the buildCache and
applyJT steps in the PCG algorithm (see Algorithm 1) are
split across three kernels. This follows the original design
of the 3DGS differentiable rasterizer [20]. In both cases, we
need to calculate the Jacobian-vector product of the form
g = JTu where J ∈ RNxM is the Jacobian matrix of N
residuals and M Gaussian parameters and u ∈ RN is an
input vector. The k-th element in the output vector is calcu-
lated as

gk =

N∑
i=0

∂ri
∂xk

ui =
∂yk

∂xk

N∑
i=0

∂ri
∂yk

ui (8)

where ri is the i-th residual and xk is the k-th Gaus-
sian parameter. Following the chain-rule, it is possible to
split up the gradient ∂ri

∂xk
= ∂ri

∂yk

∂yk

∂xk
. We can use this to

split the computation across three smaller kernels, where
only the first needs to calculate the sum over all residu-
als:

∑N
i=0

∂ri
∂yk

ui. The other kernels then only calculate
the remaining steps by parallelizing over Gaussians. Since
the sum needs to be implemented atomically, i.e., multiple
threads write to the same output position, this is the main
bottleneck for the kernel implementation. By splitting the
computation in three smaller parts, we only need to do the
costly summation in the first kernel and only to interme-
diate attributes. Concretely yk are the 2D mean, color, and
opacity attributes of the k-th projected Gaussian. Since both
the buildCache and applyJT kernels use the gradient
cache and our proposed per-pixel-per-splat parallelization
pattern, we can implement the sum by first doing a warp re-
duce and then only issuing one atomicAdd statement per
warp.

In contrast, the applyJ and diagJTJ computations
cannot be split up into smaller kernels. Concretely, the
applyJ kernel calculates u = Jp with p ∈ RM . The
k-th element in the output vector is calculated as

uk =

M∑
i=0

∂rk
∂xi

pi =

N∑
i=0

∂rk
∂yi

∂yi

∂xi
pi (9)

Similarly, the diagJTJ kernel calculates M =
diag(JTJ) ∈ RM . The k-th element in the output vector
is calculated as

gk =

N∑
i=0

(
∂ri
∂xk

)2 =

N∑
i=0

(
∂ri
∂yk

∂yk

∂xk
)2 (10)

In both cases it is not possible to move part of the gradients
outside of the sum. As a consequence, both the applyJ
and diagJTJ are implemented as one kernel, where each
thread directly calculates the complete backward path to
all Gaussian attributes. This slightly increases the num-
ber of required registers and the runtime compared to the
applyJT kernel (see Tab. 4).

The applyJ kernel requires the input vector p to be
sorted per Gaussian to make reading from it coalesced.
That is: p = [xa

1 , ..., x
z
1, ..., x

a
M , ..., xz

M]T , where xa
k is

the value corresponding to the a-th parameter of the k-th
Gaussian. In total, each Gaussian consists of 59 parame-
ters: 11 for position, rotation, scaling, and opacity and 48
for all Spherical Harmonics coefficients of degree 3. In con-
trast, all other kernels require the input vector to be sorted
per attribute to make reading from it coalesced. That is:
q = [xa

1 , ..., x
a
M , ..., xz

1, ..., x
z
M]T . We use the structure of

q for all other vector-vector calculations in Algorithm 1 as
well. Whenever we call the applyJ kernel, we thus first
call the sortX kernel that restructures q to the layout of p.

B. Derivation of Weights for Subsampling
We sample batches of fewer images to decrease the size of
the gradient cache (see Sec. 3.3.2). To combine the update
vectors from multiple batches, we calculate the weighted
mean, as detailed in Eq. (7). This weighted mean approx-
imates the true solution without any image subsampling.
That is, to obtain the update vector, we have to solve the
normal equations, as detailed in Eq. (3). When subsam-
pling images, we split the number of total residuals M into
smaller chunks. Let’s consider the case of two chunks, la-
beled as 1, 2. The normal equations (without subsampling)
can then be written as:[

JT
1 JT

2

] [J1

J2

]
∆ =

[
JT
1 JT

2

] [F1(x)
F2(x)

]
(11)

where we drop the additional LM regularization term for
clarity and divide the Jacobian and residual vector into sep-
arate matrices according to the chunks. The solution to the
normal equations is obtained by:

∆ = (JT
1 J1 + JT

2 J2)
−1(JT

1 F1(x) + JT
2 F2(x)) (12)

In contrast, when we subsample images, we obtain two sep-
arate solutions as:

∆1 = (JT
1 J1)

−1JT
1 F1(x) (13)

∆2 = (JT
2 J2)

−1JT
2 F2(x) (14)

12

We can rewrite Eq. (12) as a weighted mean of ∆1, ∆2:

∆ = K−1(JT
1 J1)(J

T
1 J1)

−1(JT
1 F1(x)) (15)

+K−1(JT
2 J2)(J

T
2 J2)

−1(JT
2 F2(x)) (16)

= w1∆1 + w2∆2 (17)

where K = (JT
1 J1 + JT

2 J2), w1 = K−1(JT
1 J1), w2 =

K−1(JT
2 J2). Calculating these weights requires to materi-

alize and invert K, which is too costly to fit in memory. To
this end, we approximate the true weights w1 and w2 with
w̃1 = diag(w1) and w̃2 = diag(w2). This directly leads to
the weighted mean that we employ in Eq. (7).

C. Detailed Analysis of Runtime
We provide additional analysis of the CUDA kernels by
running the Nsight Compute1 profiler. We provide re-
sults in Tab. 4 measured on a RTX3090 GPU for build-
ing/resorting the gradient cache and running one PCG it-
eration on the MipNerf360 [4] “garden” scene with a batch
size of one image. We add the suffixes p1, p2, p3
to signal the three kernels that we use to implement the re-
spective operation (see Appendix A).

D. Results per Scene
We provide a per-scene breakdown of our main quantitative
results against all baselines on all datasets. The compar-
isons against 3DGS [20] are in Tab. 5. The comparisons
against DISTWAR [11] are in Tab. 6. The comparisons
against gsplat [41] are in Tab. 7. The comparisons against
Taming-3DGS [27] are in Tab. 8.

1https://developer.nvidia.com/nsight-compute

13

https://developer.nvidia.com/nsight-compute

Kernel Duration (ms) ↓ Compute Throughput (%)↑ Memory Throughput (%)↑ Register Count ↓
buildCache p1 31.32 78.56 78.56 64
buildCache p2 0.53 17.43 87.94 58
buildCache p3 4.12 4.54 73.45 74
sortCacheByGaussians 5.04 61.17 61.17 18
diagJTJ 41.60 71.13 71.13 90
sortX 4.45 15.15 60.30 36
applyJ 10.98 86.32 86.32 80
applyJT p1 3.93 75.79 75.79 34
applyJT p2 0.37 18.83 89.69 40
applyJT p3 3.20 4.75 78.48 48

Table 4. Profiler Analysis of CUDA kernels. We provide results measured on a RTX3090 GPU for building/resorting the gradient cache
and running one PCG iteration on the MipNerf360 [4] “garden” scene with a batch size of one image.

14

Method Scene MipNeRF-360 [4]

SSIM↑ PSNR↑ LPIPS↓ Time (s)

3DGS [20] treehill 0.631 22.44 0.330 1130
+ Ours treehill 0.633 22.57 0.334 836

3DGS [20] counter 0.905 28.96 0.202 1178
+ Ours counter 0.904 28.89 0.206 927

3DGS [20] stump 0.769 26.56 0.217 1234
+ Ours stump 0.774 26.67 0.218 895

3DGS [20] bonsai 0.939 31.99 0.206 1034
+ Ours bonsai 0.938 31.84 0.208 794

3DGS [20] bicycle 0.764 25.20 0.212 1563
+ Ours bicycle 0.765 25.30 0.218 1141

3DGS [20] kitchen 0.925 31.37 0.128 1389
+ Ours kitchen 0.924 31.21 0.128 1156

3DGS [20] flowers 0.602 21.49 0.340 1132
+ Ours flowers 0.600 21.52 0.344 819

3DGS [20] room 0.917 31.36 0.221 1210
+ Ours room 0.916 31.10 0.224 1004

3DGS [20] garden 0.862 27.23 0.109 1573
+ Ours garden 0.863 27.30 0.110 1175

Method Scene Deep Blending [18]

SSIM↑ PSNR↑ LPIPS↓ Time (s)

3DGS [20] playroom 0.901 29.90 0.247 1085
+ Ours playroom 0.905 30.24 0.246 861

3DGS [20] drjohnson 0.898 29.12 0.246 1359
+ Ours drjohnson 0.901 29.23 0.248 1040

Method Scene Tanks & Temples [24]

SSIM↑ PSNR↑ LPIPS↓ Time (s)

3DGS [20] train 0.811 21.95 0.209 636
+ Ours train 0.811 22.07 0.214 579

3DGS [20] truck 0.877 25.40 0.148 837
+ Ours truck 0.876 25.36 0.151 747

Table 5. Quantitative comparison of our method and baselines. We show the per-scene breakdown of all metrics.

15

Method Scene MipNeRF-360 [4]

SSIM↑ PSNR↑ LPIPS↓ Time (s)

DISTWAR [11] treehill 0.633 22.47 0.327 898
+ Ours treehill 0.635 22.54 0.332 669

DISTWAR [11] counter 0.905 29.00 0.203 790
+ Ours counter 0.904 28.91 0.205 687

DISTWAR [11] stump 0.771 26.60 0.216 1017
+ Ours stump 0.773 26.70 0.217 760

DISTWAR [11] bonsai 0.939 32.13 0.206 677
+ Ours bonsai 0.938 31.92 0.208 578

DISTWAR [11] bicycle 0.763 25.19 0.212 1333
+ Ours bicycle 0.764 25.26 0.218 971

DISTWAR [11] kitchen 0.925 31.31 0.127 957
+ Ours kitchen 0.924 31.14 0.128 838

DISTWAR [11] flowers 0.602 21.45 0.340 884
+ Ours flowers 0.596 21.48 0.348 671

DISTWAR [11] room 0.916 31.41 0.221 803
+ Ours room 0.916 31.40 0.224 680

DISTWAR [11] garden 0.862 27.23 0.109 1338
+ Ours garden 0.861 27.32 0.112 1023

Method Scene Deep Blending [18]

SSIM↑ PSNR↑ LPIPS↓ Time (s)

DISTWAR [11] playroom 0.900 29.81 0.247 729
+ Ours playroom 0.905 30.24 0.246 586

DISTWAR [11] drjohnson 0.898 29.13 0.247 953
+ Ours drjohnson 0.901 29.13 0.249 758

Method Scene Tanks & Temples [24]

SSIM↑ PSNR↑ LPIPS↓ Time (s)

DISTWAR [11] train 0.812 22.05 0.209 504
+ Ours train 0.810 22.10 0.216 440

DISTWAR [11] truck 0.877 25.29 0.148 698
+ Ours truck 0.877 25.28 0.150 635

Table 6. Quantitative comparison of our method and baselines. We show the per-scene breakdown of all metrics.

16

Method Scene MipNeRF-360 [4]

SSIM↑ PSNR↑ LPIPS↓ Time (s)

gsplat [41] treehill 0.634 22.44 0.324 973
+ Ours treehill 0.635 22.54 0.332 701

gsplat [41] counter 0.908 28.99 0.201 903
+ Ours counter 0.904 28.91 0.205 762

gsplat [41] stump 0.769 26.53 0.218 1097
+ Ours stump 0.774 26.70 0.217 793

gsplat [41] bonsai 0.937 31.95 0.208 783
+ Ours bonsai 0.938 31.92 0.208 646

gsplat [41] bicycle 0.765 25.21 0.206 1398
+ Ours bicycle 0.765 25.26 0.218 988

gsplat [41] kitchen 0.926 31.17 0.128 1086
+ Ours kitchen 0.924 31.14 0.128 921

gsplat [41] flowers 0.600 21.53 0.338 965
+ Ours flowers 0.601 21.48 0.348 709

gsplat [41] room 0.920 31.48 0.219 913
+ Ours room 0.916 31.39 0.224 753

gsplat [41] garden 0.869 27.48 0.105 1462
+ Ours garden 0.861 27.32 0.112 1085

Method Scene Deep Blending [18]

SSIM↑ PSNR↑ LPIPS↓ Time (s)

gsplat [41] playroom 0.907 29.89 0.248 799
+ Ours playroom 0.904 30.90 0.247 626

gsplat [41] drjohnson 0.901 29.16 0.244 1040
+ Ours drjohnson 0.901 29.07 0.251 805

Method Scene Tanks & Temples [24]

SSIM↑ PSNR↑ LPIPS↓ Time (s)

gsplat [41] train 0.811 21.64 0.209 558
+ Ours train 0.809 22.09 0.216 381

gsplat [41] truck 0.880 25.35 0.149 735
+ Ours truck 0.877 25.28 0.150 447

Table 7. Quantitative comparison of our method and baselines. We show the per-scene breakdown of all metrics.

17

Method Scene MipNeRF-360 [4]

SSIM↑ PSNR↑ LPIPS↓ Time (s)

Taming-3DGS† [27] treehill 0.630 22.61 0.340 638
+ Ours treehill 0.635 22.53 0.332 510

Taming-3DGS† [27] counter 0.904 28.96 0.205 583
+ Ours counter 0.904 28.91 0.205 553

Taming-3DGS† [27] stump 0.764 26.51 0.225 728
+ Ours stump 0.773 26.70 0.217 579

Taming-3DGS† [27] bonsai 0.938 32.16 0.208 508
+ Ours bonsai 0.938 31.92 0.208 468

Taming-3DGS† [27] bicycle 0.756 25.18 0.224 882
+ Ours bicycle 0.764 25.26 0.218 702

Taming-3DGS† [27] kitchen 0.924 31.13 0.129 742
+ Ours kitchen 0.924 31.14 0.128 696

Taming-3DGS† [27] flowers 0.594 21.42 0.351 620
+ Ours flowers 0.598 21.48 0.348 507

Taming-3DGS† [27] room 0.916 31.64 0.224 561
+ Ours room 0.916 31.39 0.224 529

Taming-3DGS† [27] garden 0.861 27.36 0.113 895
+ Ours garden 0.861 27.32 0.112 748

Method Scene Deep Blending [18]

SSIM↑ PSNR↑ LPIPS↓ Time (s)

Taming-3DGS† [27] playroom 0.903 29.99 0.245 502
+ Ours playroom 0.904 30.23 0.247 453

Taming-3DGS† [27] drjohnson 0.902 29.43 0.240 678
+ Ours drjohnson 0.901 29.21 0.249 627

Method Scene Tanks & Temples [24]

SSIM↑ PSNR↑ LPIPS↓ Time (s)

Taming-3DGS† [27] train 0.815 22.18 0.205 411
+ Ours train 0.809 22.06 0.217 349

Taming-3DGS† [27] truck 0.879 25.40 0.146 514
+ Ours truck 0.879 25.36 0.150 436

Table 8. Quantitative comparison of our method and baselines. We show the per-scene breakdown of all metrics.

18

	. Introduction
	. Related Work
	. Novel-View-Synthesis
	. Speed-Up Gaussian Splatting Optimization
	. Gauss-Newton Optimization For 3D Reconstruction Tasks

	. Method
	. Review of Gaussian-Splatting
	. Levenberg-Marquardt Optimization for 3DGS
	. Memory Efficient PCG Implementation
	CUDA Kernel Design
	Image Subsampling Scheme

	. 3DGS Optimization in Two Stages

	. Results
	. Comparison to Baselines
	. Ablations
	. Runtime Analysis
	. Limitations

	. Conclusion
	. Acknowledgements
	. More Details about CUDA Kernel Design
	. Derivation of Weights for Subsampling
	. Detailed Analysis of Runtime
	. Results per Scene

