
3DGS-LM: Faster Gaussian-Splatting Optimization with Levenberg-Marquardt

Lukas Höllein1 Aljaž Božič2 Michael Zollhöfer2 Matthias Nießner1

1Technical University of Munich 2Meta
https://lukashoel.github.io/3DGS-LM/

400 600 800 1000
Time (s)

24.50

24.75

25.00

25.25

25.50

25.75

26.00

26.25

26.50

PS
N

R
 (d

b)

119.0s

92.0s

54.9s

3DGS + Ours
3DGS
DISTWAR + Ours
DISTWAR
Taming-3DGS + Ours
Taming-3DGS

3DGS, 692s, 18.78 PSNR 3DGS+Ours, 692s, 22.10 PSNR Ground-Truth Image

3DGS, 657s, 21.51 PSNR 3DGS+Ours, 657s, 24.12 PSNR Ground-Truth Image

Figure 1. Our method accelerates 3D Gaussian Splatting (3DGS) [20] reconstruction by replacing the ADAM optimizer with a tailored
Levenberg-Marquardt. Left: starting from the same initialization, our method converges 30% faster on the Tanks&Temples “Train” scene.
Right: after the same amount of time, our method produces higher quality renderings (e.g., better brightness and contrast).

Abstract

We present 3DGS-LM, a new method that accelerates
the reconstruction of 3D Gaussian Splatting (3DGS) by
replacing its ADAM optimizer with a tailored Levenberg-
Marquardt (LM). Existing methods reduce the optimiza-
tion time by decreasing the number of Gaussians or by im-
proving the implementation of the differentiable rasterizer.
However, they still rely on the ADAM optimizer to fit Gaus-
sian parameters of a scene in thousands of iterations, which
can take up to an hour. To this end, we change the optimizer
to LM that runs in conjunction with the 3DGS differentiable
rasterizer. For efficient GPU parallelization, we propose a
caching data structure for intermediate gradients that al-
lows us to efficiently calculate Jacobian-vector products in
custom CUDA kernels. In every LM iteration, we calculate
update directions from multiple image subsets using these
kernels and combine them in a weighted mean. Overall,
our method is 30% faster than the original 3DGS while ob-
taining the same reconstruction quality. Our optimization is
also agnostic to other methods that accelerate 3DGS, thus
enabling even faster speedups compared to vanilla 3DGS.

1. Introduction

Novel View Synthesis (NVS) is the task of rendering a
scene from new viewpoints, given a set of images as in-
put. NVS can be employed in Virtual Reality applications to
achieve photo-realistic immersion and to freely explore cap-
tured scenes. To facilitate this, different 3D scene represen-
tations have been developed [2, 3, 20, 28, 30, 36]. Among
those, 3DGS [20] (3D Gaussian-Splatting) is a point-based
representation that parameterizes the scene as a set of 3D
Gaussians. It offers real-time rendering and high-quality
image synthesis, while being optimized from a set of posed
images through a differentiable rasterizer.

3DGS is optimized from a set of posed input images
that densely capture the scene. The optimization can take
up to an hour to converge on high-resolution real-world
scene datasets with a lot of images [42]. It is desirable to
reduce the optimization runtime which enables faster us-
age of the reconstruction for downstream applications. Ex-
isting methods reduce this runtime by improving the op-
timization along different axes. First, 3DGS renders im-
ages with a tile-based, differentiable rasterizer that is imple-
mented in CUDA. In every iteration, the Gaussians get up-
dated with gradient descent by backpropagating a rendering
loss through the rasterizer. By improving the speed of the

1

https://lukashoel.github.io/3DGS-LM/

forward- and backward-pass, recent methods accelerate the
optimization [11, 14, 27, 41]. Second, in 3DGS the number
of Gaussians is gradually grown during optimization, which
is known as densi�cation. To facilitate this, 3DGS accumu-
lates positional gradients over multiple iterations and uses
these statistics to split and prune Gaussians. Recently, GS-
MCMC [22], Taming-3DGS [27], Mini-Splatting [13], and
Revising-3DGS [5] propose novel densi�cation schemes
that reduce the number of required Gaussians to represent
the scene. This makes the optimization more stable and also
faster, since fewer Gaussians must be optimized.

Despite these improvements, the optimization still takes
signi�cant resources, requiring thousands of gradient de-
scent iterations to converge. To this end, we aim to re-
duce the runtime by improving the underlying optimiza-
tion during 3DGS reconstruction. More speci�cally, we
propose to replace the widely used ADAM [23] optimizer
with a tailored Levenberg-Marquardt (LM) [29]. This al-
lows us to accelerate 3DGS reconstruction (Fig. 1 left) by
over 30% on average. Concretely, we propose a highly-
ef�cient GPU parallelization scheme for the preconditioned
conjugate gradient (PCG) algorithm within the inner LM
loop in order to obtain the respective update directions. To
this end, we extend the differentiable 3DGS rasterizer with
custom CUDA kernels that compute Jacobian-vector prod-
ucts. Our proposed caching data structure for intermediate
gradients (Fig. 3) then allows us to perform these calcula-
tions fast and ef�ciently in a data-parallel fashion. In order
to scale caching to high-resolution image datasets, we cal-
culate update directions from multiple image subsets and
combine them in a weighted mean. Overall, this allows us
to improve reconstruction time by 30% compared to state-
of-the-art 3DGS baselines while achieving the same recon-
struction quality (Fig. 1 right).

To summarize, our contributions are:
• we propose a tailored 3DGS optimization based on

Levenberg-Marquardt that improves reconstruction time
by 30% and which is agnostic to other 3DGS accelera-
tion methods.

• we propose a highly-ef�cient GPU parallelization scheme
for the PCG algorithm for 3DGS in custom CUDA ker-
nels with a caching data structure to facilitate ef�cient
Jacobian-vector products.

2. Related Work

2.1. NovelViewSynthesis

Novel-View-Synthesis is widely explored in recent years [2,
3, 18, 20, 28, 30, 36]. Neural Radiance Fields (NeRF) [28]
are particularly successful, because they achieve highly
photo-realistic image synthesis results by optimizing MLP
weights through volume rendering. To improve training
time from days to minutes, NeRF was combined with

explicit representations like voxel grids [15, 35], hash
grids [30], or points [40].

3D Gaussian Splatting (3DGS) [20] extends this idea by
representing the scene as a set of 3D Gaussians, that are ras-
terized into 2D splats and then� -blended into pixel colors.
The approach gained popularity, due to the real-time render-
ing capabilities of high quality images. Since its inception,
3DGS was improved along several axes (next to improving
optimization runtime). Recent methods improve the qual-
ity of rendered images [17, 26, 43] and the ef�ciency dur-
ing rendering [31, 34]. Others obtain better surface recon-
structions [16, 19], reduce the memory requirements of the
Gaussians [32], and enable training and rendering of large-
scale scenes [21, 46]. We similarly adopt 3DGS as our
scene representation, but focus on improving the per-scene
optimization time.

2.2. SpeedUp Gaussian Splatting Optimization

Obtaining a 3DGS scene reconstruction can be acceler-
ated in several ways. One line of work reduces the num-
ber of Gaussians by changing the densi�cation heuris-
tics [5, 13, 22, 26, 27]. Recent methods focusing on sparse-
view reconstruction train a neural network as data-driven
prior, that directly outputs Gaussians in a single forward
pass [6–8, 12, 25]. In contrast, we focus on the dense-view
and per-scene optimization setting, i.e., we do not require a
data prior. Other works improve the optimization runtime
by improving the implementation of the underlying differ-
entiable rasterizer [11, 14, 27, 41]. We demonstrate that our
method is compatible with these approaches, i.e., our op-
timizer can be plugged into these methods to even further
accelerate the optimization.

2.3. GaussNewton Optimization For 3D Recon
struction Tasks

NeRF and 3DGS are typically optimized with stochas-
tic gradient descent (SGD) optimizers like ADAM [23]
for thousands of iterations. In contrast, many works in
RGB-D fusion employ the Gauss-Newton (or Levenberg-
Marquardt) algorithms to optimize objectives for 3D recon-
struction tasks [9, 10, 37, 38, 47, 48]. By doing so, these
methods can quickly converge in an order of magnitude
fewer iterations than SGD. Motivated by this, we aim to
accelerate 3DGS optimization by adopting the Levenberg-
Marquardt algorithm as our optimizer. Rasmusonet al. [33]
implemented the Gauss-Newton algorithm for reconstruct-
ing a NeRF based on voxel grids. Their technical approach
is related to ours, but we implement it for the 3DGS repre-
sentation in a different way. Concretely, we subsample im-
ages in every iteration and introduce a caching data struc-
ture. This allows us to achieve state-of-the-art rendering
quality, while signi�cantly accelerating the optimization in
comparison to existing methods.

2

Figure 2. Method Overview. We accelerate 3DGS optimization
by framing it in two stages. First, we use the original ADAM
optimizer and densi�cation scheme to arrive at an initialization
for all Gaussians. Second, we employ the Levenberg-Marquardt
algorithm to �nish optimization.

3. Method

Our pipeline is visualized in Fig. 2. First, we obtain
an initialization of the Gaussians from a set of posed im-
ages and their SfM point cloud as input by running the
standard 3DGS optimization (Sec. 3.1). In this stage the
Gaussians are densi�ed, but remain unconverged. After-
wards, we �nish the optimization with our novel optimizer.
Concretely, we optimize the sum of squares objective with
the Levenberg-Marquardt (LM) [29] algorithm (Sec. 3.2),
which we implement in ef�cient CUDA kernels (Sec. 3.3).
This two-stage approach accelerates the optimization com-
pared to only using �rst-order optimizers.

3.1. Review of GaussianSplatting

3D Gaussian Splatting (3DGS) [20] models a scene as a set
of 3D Gaussians, each of which is parameterized by a po-
sition, rotation, scaling, and opacity. The view-dependent
color is modeled by Spherical Harmonics coef�cients of or-
der 3. To render an image of the scene from a speci�c view-
point, all visible Gaussians are �rst projected into 2D splats
with a tile-based differentiable rasterizer. Afterwards, the
splats are� -blended per-pixel to obtain a �nal pixel color.
To �t the Gaussians to image observations, a rendering loss
L is optimized with the ADAM [23] optimizer w.r.t. all
Gaussian parametersx:

L (x)=
1
N

NX

i =1

(� 1L 1(ĉi ; ci)+ � 2(1�L SSIM (ĉi ; ci))) (1)

where� 1=0 :2, � 2=0 :8, ĉi is the rendered color, andci the
ground-truth color for one color channel of one pixel. Typi-

cally, ADAM uses a batch size of 1, meaning a random im-
age per iteration is sampled to perform an update step. The
number of Gaussians are initialized from the SfM points and
is gradually grown during the �rst half of the optimization,
which is known as densi�cation [20].

3.2. LevenbergMarquardt Optimization for 3DGS

We employ the LM algorithm for optimization of the Gaus-
sians by reformulating the rendering loss as a sum of
squares energy function:

E(x)=
NX

i =1

(
p

� 1L 1(ĉi ; ci)
2
+

p
� 2(1�L SSIM (ĉi ; ci))

2
)

(2)

where we have in totalN =6HWP residuals forP images
with HxW pixels each and 3 color channels. We take the
square root of theL 1 andL SSIM losses, to convert Eq. (1)
into the required form for the LM algorithm. In other words,
we use the identical objective, but a different optimizer. In
contrast to ADAM, the LM algorithm requires a large batch
size (ideally all images) for every update step to achieve
stable convergence [29]. In practice, we select large enough
subsets of all images to ensure reliable update steps (see
Sec. 3.3.2 for more details).

3DGS uses the structural similarity index measure
(SSIM) as loss function during optimization. In SSIM,
the local neighborhood of every pixel gets convolved with
Gaussian kernels to obtain the �nal per-pixel score [39].
As a consequence, gradients from the loss �ow from ev-
ery pixel to all Gaussians in the local neighborhood of that
pixel. In contrast, theL 1 loss only provides gradients from
every pixel to the Gaussians along the corresponding ray.
For simplicity, we approximate the gradient �ow inL SSIM

by backpropagating the per-pixel scores only to the center
pixels (ignoring the contribution to other pixels in the local
neighborhood). We implement it following the derivation
of Zhaoet al. [45]. This approximation allows us to keep
rays independent from each other when calculating the Ja-
cobian, which is a desirable property for our CUDA kernel
implementation (see Sec. 3.3 for more details).

Obtaining Update Directions In every iteration of our
optimization we obtain the update direction� 2 RM for all
M Gaussian parameters by solving the normal equations:

(JT J + � reg diag(JT J))� = JT F(x) (3)

whereF(x) 2 RN is the residual vector corresponding to
Eq. (2) andJ 2 RNxM the corresponding Jacobian matrix.

In a typical dense capture setup, we optimize over mil-
lions of Gaussians and have hundreds of high-resolution im-
ages. Even thoughJ is a sparse matrix (each row only con-
tains non-zero values for the Gaussians that contribute to

3

the color of that pixel), it is therefore not possible to materi-
alizeJ in memory. Instead, we employ the preconditioned
conjugate gradient (PCG) algorithm, to solve Eq. (3) in a
matrix-freefashion. We implement PCG in custom CUDA
kernels, see Sec. 3.3 for more details.

Apply Parameter Update After we obtained the solution
� , we run a line search to �nd the best scaling factor for
updating the Gaussian parameters:

min

E(x k � �) (4)

In practice, we run the line search on a 30% subset of all
images, which is enough to get a reasonable estimate for ,
but requires fewer rendering passes. Afterwards, we update
the Gaussian parameters as:x k+1 = x k � � . Similar to the
implementation of LM in CERES [1], we adjust the reg-
ularization strength� reg after every iteration based on the
quality of the update step. Concretely, we calculate

� =
jjF (x + �) jj2 � jj F (x)jj2

jj J � + F (x)jj2 � jj F (x)jj2 (5)

and only keep the update if� > 1e� 5, in which case we
reduce the regularization strength� reg by half. Otherwise
we revert the update and double� reg .

3.3. Memory Ef�cient PCG Implementation

The PCG algorithm obtains the solution to the least squares
problem of Eq. (3) in multiple iterations. In practice, we run
the algorithm forniters =8 iterations and implement it with
custom CUDA kernels. We summarize it in Algorithm 1.

Most of the work in every PCG iteration is consumed
by calculating the matrix-vector productgi = JT Jp i . We
implement this product in two stages by �rst calculating
u i = Jp i and thengi = JT u i . Calculating the non-zero
values ofJ requires backpropagating from every residual
through the� -blending and splat projection steps back to
all Gaussian parameters. The original tile-based rasterizer
of 3DGS [20] implements the calculation ofJT x with a
per-pixelparallelization. That is, every thread handles one
ray, stepping backwards along all splats that this ray hit.
We found that this parallelization is too slow for an ef�-
cient PCG implementation. The reason is that we have to
repeat this calculation multiple times: per PCG iteration we
do it once foru i and once forgi . As a consequence, we
re-calculate the same intermediate� -blending states, since
the loop over splats is evaluated multiple times.

Our key idea is to change the parallelization fromper-
pixel to per-pixel-per-splat. We summarize this pattern in
Fig. 3. We describe the backward pass from a residualr to
a Gaussian parameterx i as:

@r
@xi

=
@r
@p

@p
@s

@s
@xi

(6)

Algorithm 1: We run the PCG algorithm with cus-
tom CUDA kernels (blue) in every LM iteration.

Input : Gaussians and camerasG, ResidualsF
Output: Update Direction�

1 b; C = buildCache (G; F) // b= � JT F
2 C = sortCacheByGaussians (C)
3 M � 1 = 1=diagJTJ (G; C)
4 x0 = M � 1b
5 u0 = applyJ (sortX (x0); G; C) // u0= Jx 0

6 g0 = applyJT (u0; G; C) // g0= JT u0

7 r 0 = b � g0

8 z0 = M � 1r 0

9 p0 = z0

10 for i = 0 to niters do
11 u i = applyJ (sortX (p i); G; C) // u i = Jp i

12 gi = applyJT (u i ; G; C) // gi = JT u i

13 � i = r T
i z i

p T
i g i

14 x i +1 = x i + � i p i

15 r i +1 = r i � � i gi

16 zi +1 = M � 1r i +1

17 � i =
r T

i +1 z i +1

r T
i z i

18 p i +1 = zi +1 + � i p i

19 end for
20 return x i +1

where @r
@p is the gradient from the residual to the pixel,@p

@s

from the pixel to the projected splat, and@s
@xi

from the splat

to the Gaussian parameter. Calculating@p
@s, requires ac-

cess to the accumulated transmittance and color in the� -
blending process for that pixel until splats. Instead of loop-
ing over all splats along a ray and recalculating@p

@s every
time, we cache this gradient once (Fig. 3 left). Every time
we need to calculateu i or gi in the PCG algorithm, we
then read the corresponding gradients from the cache (Fig. 3
right). This allows us to directly parallelize over all splats
in all pixels, which drastically accelerates the runtime since
we no longer have to loop over rays.

Storing these gradients in a cache consumes additional
GPU memory and is largely controlled by how many im-
ages (rays) we process in each PCG iteration and how many
splats contribute to the �nal color along each ray. We pro-
pose an ef�cient subsampling scheme in Sec. 3.3.2 to limit
the memory to the available budget.

3.3.1 CUDA Kernel Design

We describe the parallelization pattern and output of every
CUDA kernel that we use to implement Algorithm 1. We
refer to the supplemental material for more details.
buildCache We use theper-pixelparallelization to cal-

4

Figure 3. Parallelization Strategy And Caching Scheme.We implement the PCG algorithm with ef�cient CUDA kernels, that use a
gradient cache to calculate Jacobian-vector products. Before PCG starts, we create the gradient cache following theper-pixelparallelization
of 3DGS [20]. Afterwards, we sort the cache by Gaussians to ensure coalesced read accesses. The cache decouples splats along rays, which
allows us to parallelizeper-pixel-per-splatduring PCG.

culate all gradients@p
@s. For coalesced write accesses, we

store the cache values sorted by pixels (Fig. 3 left). Ad-
ditionally, we calculateb = � JT F following the imple-
mentation of the differentiable rasterizer in 3DGS [20], by
splitting this calculation into three smaller kernels, where
we write out the cache completely in the �rst kernel.
sortCacheByGaussians All remaining kernels re-
quire the cache to be sorted over Gaussians to ensure co-
alesced read accesses. We sort the cache by Gaussians and
calculate a pre�x sum over the number of entries per Gaus-
sian. Subsequent kernels use this to index into the cache.
diagJTJ We use the Jacobi preconditioner
M � 1=1=diag(JT J) when running PCG (Algorithm 1).
This kernel computes the required entries by utilizing
the per-pixel-per-splat parallelization and the cache.
Every thread directly squares its calculated gradients and
atomically adds them to the output vector.
applyJ We computeu i = Jp i by utilizing the per-pixel-
per-splatparallelization and the cache. Additionally, we
resort the input vectorp i for a coalesced memory access us-
ing thesortX kernel. Every thread sums up the calculated
gradients and atomically adds them to the output vector.
applyJT We computegi = JT u i by utilizing the per-
pixel-per-splatparallelization and the cache. Similar to
buildCache , we split the computation in three kernels.

3.3.2 Image Subsampling Scheme

Our caching data structure consumes additional GPU mem-
ory. For high resolution images in a dense reconstruction
setup, the number of rays and thus the cache size can grow
too large. To this end, we split the images into batches
and solve the normal equations independently, following
Eq. (3). This allows us to store the cache only for one batch

at a time. Concretely, forn batches, we obtainn update
vectors and combine them in a weighted mean:

� =
nX

i =1

M i � iP n
k=1 M k

(7)

where we use the inverse of the PCG preconditioner
M i = diag(JT

i J i) as the weights. We refer to the supple-
ment for a derivation of the weights. These weights balance
the importance of update vectors across batches based on
how much each Gaussian parameter contributed to the �nal
colors in the respective images. This subsampling scheme
allows us to control the cache size relative to the number of
images in a batch. In practice, we can choose batch sizes be-
tween 25 and 70 images and use up ton=4 batches per LM
iteration. We either select the images at random or, if the
scene was captured along a smooth trajectory, in a strided
fashion to maximize the scene coverage in every batch.

3.4. 3DGS Optimization in Two Stages

We utilize our LM implementation in the second stage of
3DGS optimization (see Fig. 2). Before that, we use the
ADAM optimizer to obtain an initialization of the Gaussian
parameters. It is also possible to use the LM optimizer from
the beginning, however this does not bring any additional
speed-up (see Fig. 4). In the beginning of optimization,
gradient descent makes rapid progress by optimizing the
Gaussians from a single image per iteration. In contrast, we
sample many images in every LM iteration, which makes
every iteration more time-consuming. This additional com-
pute overhead is especially helpful to converge to optimal
Gaussian parameters quicker (see Fig. 1 left).

Splitting the method in two stages also allows us to com-
plete the densi�cation of the Gaussians before employing
the LM optimizer, which simpli�es the implementation.

5

Figure 4. Comparison of initialization iterations. In our �rst
stage, we initialize the Gaussians with gradient descent forK it-
erations, before �netuning with our LM optimizer. After 6000
or 8000 iterations, our method converges faster than the baseline.
With less iterations, pure LM is slower, which highlights the im-
portance of our two stage approach. Results reported on the “gar-
den” scene from MipNeRF360 [28] without densi�cation.

4. Results

BaselinesWe compare our LM optimizer against ADAM in
multiple reference implementations of 3DGS. This shows,
that our method is compatible with other runtime improve-
ments. In other words, we can swap out the optimizer and
retain everything else. Concretely, we compare against the
original 3DGS implementation [20], its reimplementation
“gsplat” [41], and DISTWAR [11]. Additionally, we com-
pare against Taming-3DGS [27] by utilizing their released
source code, that contains the rasterizer improvements and
uses the 3DGS [20] densi�cation heuristics (referred to as
“Taming-3DGS†” in the following). We run all baselines
for 30K iterations with their default hyperparameters.

Datasets and MetricsWe benchmark our runtime improve-
ments on three established datasets: Tanks&Temples [24],
Deep Blending [18], and MipNeRF360 [4]. These datasets
contain in total 13 scenes that cover bounded indoor and un-
bounded outdoor environments. We �t all scenes for every
method on the same NVIDIA A100 GPU using the train/test
split as proposed in the original 3DGS [20] publication. To
measure the quality of the reconstruction, we report peak
signal-to-noise ratio (PSNR), structural similarity (SSIM),
and perceptual similarity (LPIPS) [44] averaged over all test
images. Additionally, we report the optimization runtime
and the maximum amount of consumed GPU memory.

Implementation Details For our main results, we run the
�rst stage for 20K iterations with the default hyperparam-
eters of the respective baseline. The densi�cation is com-
pleted after 15K iterations. Afterwards, we only have to run
5 LM iterations with 8 PCG iterations each to converge on
all scenes. This showcases the ef�ciency of our optimizer.

Since the image resolutions are different for every dataset,
we select the batch-size and number of batches such that
the consumed memory for caching is similar. We select 25
images in 4 batches for MipNeRF360 [4], 25 images in 3
batches for Deep Blending [18], and 70 images in 3 batches
for Tanks&Temples [24]. We constrain the value range of
� reg for stable updates. We de�ne it in[1e� 4; 1e4] for Deep
Blending [18] and Tanks&Temples [24] and in the interval
[1e� 4; 1e� 2] for MipNeRF360 [4].

4.1. Comparison to Baselines

We report our main quantitative results in Tab. 1. Our LM
optimizer can be added to all baseline implementations and
accelerates the optimization runtime by 30% on average.
The reconstructions show similar quality across all metrics
and datasets, highlighting that our method arrives at sim-
ilar local minima, just faster. We also provide a per-scene
breakdown of these results in the supplemental material. On
average our method consumes 53 GB of GPU memory on
all datasets. In contrast, the baselines do not use an extra
cache and only require between 6-11 GB of memory. This
showcases the runtime-memory tradeoff of our approach.

We visualize sample images from the test set in Fig. 5 for
both indoor and outdoor scenarios. After the same amount
of optimization runtime, our method is already converged
whereas the baselines still need to run longer. As a result,
the baselines still contain suboptimal Gaussians, which re-
sults in visible artifacts in rendered images. In comparison,
our rendered images more closely resemble the ground truth
with more accurate brightness / contrast and texture details.

4.2. Ablations

Is the L1/SSIM objective important?
We utilize the same loss functions in our LM optimizer

as in the original 3DGS implementation, namely theL 1 and
L SSIM losses (see Eq. (1)). Since LM energy terms are de-
�ned as a sum of squares, we adopt the square root formu-
lation of these loss functions to arrive at an identical objec-
tive (see Eq. (2)). We compare this choice against �tting the
Gaussians with only anL 2 loss, that does not require taking
a square root. Concretely, we compare the achieved qual-
ity and runtime of LM against ADAM for both theL 2 loss
and theL 1 andL SSIM losses. As can be seen in Tab. 2, we
achieve faster convergence and similar quality in both cases.
However, the achieved quality is inferior for both LM and
ADAM when only using theL 2 loss. This highlights the
importance of theL 1 andL SSIM loss functions and why
we adopt them in our method as well.
How many images per batch are necessary? The key
hyperparameters in our model are the number of images in
a batch and how many batches to choose for every LM it-
eration (Sec. 3.3.2). This directly controls how much GPU
memory our optimizer consumes and how much time we

6

	. Introduction
	. Related Work
	. Novel-View-Synthesis
	. Speed-Up Gaussian Splatting Optimization
	. Gauss-Newton Optimization For 3D Reconstruction Tasks

	. Method
	. Review of Gaussian-Splatting
	. Levenberg-Marquardt Optimization for 3DGS
	. Memory Efficient PCG Implementation
	CUDA Kernel Design
	Image Subsampling Scheme

	. 3DGS Optimization in Two Stages

	. Results
	. Comparison to Baselines
	. Ablations
	. Runtime Analysis
	. Limitations

	. Conclusion
	. Acknowledgements
	. More Details about CUDA Kernel Design
	. Derivation of Weights for Subsampling
	. Detailed Analysis of Runtime
	. Results per Scene

